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1. Introduction 
A fundamental issue in Corporate Finance is the understanding of the drivers of corporate 

investment decisions. One perspective that has gained increased attention over the last 30 years 

views corporate investments as result of the exercise of “real options”, see Dixit and Pindyck, 

1994; Abel and Eberly, 1994. The growing popularity of the real options view of investment is in 

part rooted in the rise of economic and policy uncertainty during the last 20 years, and the ability 

of the real options framework to explain delayed investments in response to higher uncertainty, 

see Bloom, 2009; Bloom, Baker and Davis, 2016; Gulen and Ion 2015, Kim and Kung, 2016. At 

the same time, technological progress and structural change have driven corporations to 

increasingly invest in R&D, intellectual property and related intangible assets, see Edmans, 2011; 

Crouzet and Eberly, 2018a; 2018b; Ewans, Peters and Wang, 2021. Joining these two trends of the 

increasing importance of uncertainty shocks as well as rise in corporate R&D, a natural question 

is: How does the interaction of uncertainty and R&D impact corporate investment? 

In this study, we provide direct empirical evidence that R&D capital is a significant determinant 

of corporate investment responsiveness to (uncertainty about) growth opportunities. This evidence 

is consistent with the R&D-based real options model, according to which R&D generates real 

options that are ready to be exercised through increased capital investment when growth 

opportunities arrive, see Berk, Green and Naik, 1999; Kumar and Li, 2016. To our knowledge, 

ours is the first study to provide credible causal evidence for this mechanism by addressing two 

issues that have prevented the prior empirical literature to establish similar results. First, shocks to 

the Present Value of Growth Opportunities (PVGO) are typically hard to measure, even as the 

Efficient Market Hypothesis suggests that higher stock market returns might be indicative of 

higher PVGO. The key challenge, as outlined by Fama, 1970, is that market returns might be high 

not just because of news of higher valuation of growth opportunities, but also due to risk 

compensation. We therefore employ recent advances in measuring expected returns from option 

prices, due to Ross, 2015 to calculate measures of abnormal returns, which are the basis for risk-

adjusted PVGO news and uncertainty shocks. The second challenge is that any interaction between 

growth opportunities and R&D could be driven by unobservable firm-specific factors, such as 

CEO style (Bertrand and Schoar, 2003) or other intangibles (Edmans, 2011). To address this 

second issue, we use regional variation in R&D tax credits to build exogenously determined R&D 
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capital stocks, as in Bloom, Schankerman and Van Reenen, 2013; Homberg and Matray, 2018. 

Equipped with these exogenous R&D capital stocks we are in a position to investigate the causal 

impact of R&D capital for corporate investment responsiveness to growth opportunity shocks.  

We document three key sets of results. Our first set of results focuses on our new measures of 

PVGO shocks and their direct impact on corporate investment. Following the recent empirical 

literature on real option effects in corporate investment, such as Gulen and Ion, 2015 and Kim and 

Kung, 2016, we measure uncertainty about growth opportunities as well as average news about 

PVGO. We show that our new measures of PVGO news shocks significantly stimulate corporate 

investment, in contrast to uncorrected average market returns, which exhibit the opposite sign. 

This result would be expected if uncorrected market returns mostly reflected risk-compensation 

instead of PVGO news. We also find evidence for substantial delay effects of PVGO uncertainty 

shocks, consistent with Bloom, 2009; Kim and Kung, 2016. An especially attractive feature of our 

analysis is that we can simultaneously control for average changes in PVGO as well as changes in 

the uncertainty of PVGO, thereby addressing the common criticism that times of high uncertainty 

are also types of bad news, see Bloom et al, 2018.  

Our second set of results shows how R&D capital shapes the responsiveness of corporate 

investment to PVGO news and uncertainty shocks. Consistent with our R&D-based real options 

model of investment, firms with high R&D capital tend to be more response to PVGO shocks. 

They expand investment more aggressively in response to positive PVGO news shocks and 

contract investment more aggressively in response to PVGO uncertainty shocks. This is consistent 

with the view that R&D capital provides real growth options that are exercised by investing in 

physical capital when good news arrives; our results are also consistent with delayed exercise of 

real options associated with higher levels of R&D capital.  

We also provide a battery of robustness checks and show that our investment response estimates 

are not driven by the interaction of PVGO shocks with firm-level differences in asset 

redeployability (or lumpy investments), financial frictions, firm lifecycle growth opportunity 

differences or moral hazard-implied risk shifting.  

Our analysis contributes to several different empirical literatures on corporate investment 

behavior. We contribute to a large literature on corporate responses to uncertainty shocks, which 

started with theoretical work in the 1990s (Dixit and Pindyck, 1994; Abel and Eberly, 1994) and 
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has been successfully empirically applied by studies such as Bloom, Bond and Van Reenen, 2006; 

Bloom, 2009; and Kim and Kung, 2016. Additionally, recent work has extended the analysis of 

the real options model of investment from economic uncertainty to policy uncertainty, see Gulen 

and Ion, 2015; Bloom, Baker and Davis, 2016. But while much of this literature has focused on 

the real-options implications of fixed costs of adjustment or partial irreversibility, our contribution 

to this literature to provide credible causal evidence for the hypothesis that R&D-based real options 

considerations are a significant additional channel to understand corporate investment delays in 

response to uncertainty.  

Much of our analysis is consistent with the view that the exercise of growth options requires capital 

investment, an idea we share with studies such as Berk, Green and Naik, 1999; Anderson and 

Garcia-Feijoo, 2006; Kumar and Li, 2016.1 However, this literature, mainly focuses on the arrival 

and generation of idiosyncratic or firm-specific growth options, and their implications for cross-

sectional asset pricing. Our efforts complement this literature by showing how R&D-implied 

growth options influence the corporate investment responsiveness to systematic and idiosyncratic 

PVGO shocks.    

We therefore also contribute to the recent fast-growing literature on heterogeneous firm investment 

responses to common shocks. Examples include investment response heterogeneity to monetary 

policy shocks due to financial frictions (Adao and Silva, 2016; Ottonello and Winberry, forth); to 

uncertainty shocks due to asset redeployability (Gulen and Ion, 2015; Kim and Kung, 2016); to 

competitive shocks due to firm size or R&D capital (Fromenteau, Schymik and Tscheke, 2016; 

Hombert and Matray, 2018). To our knowledge, ours is the first study to estimate the effect of 

R&D capital in explaining heterogeneous investment responses to common growth opportunity 

shocks.  

 

2. Theory 
To derive empirical predictions, we embed the generation of growth options through R&D as in 

Bloom and Van Reenen, 2002 into a model of growth options with idiosyncratic and systematic 
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growth opportunities as in Babenko, Boguth and Tserlikevich, 2016. Following Babenko et al, 

2016, flow profits for firm 𝑖𝑖 can be written as2 

Π𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝜌𝜌𝑖𝑖𝑦𝑦 (1) 

consisting of an idiosyncratic component 𝑥𝑥𝑖𝑖 and a non-zero exposure 𝜌𝜌𝑖𝑖 to a common risk factor 
𝑦𝑦. Both 𝑥𝑥𝑖𝑖 and 𝑦𝑦 follow geometric Brownian motions with mean 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦 and dispersions 𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦 

𝑑𝑑𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖

= 𝜇𝜇𝑥𝑥 ⋅ 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑥𝑥 ⋅ 𝑑𝑑𝑧𝑧𝑖𝑖 

 
𝑑𝑑𝑑𝑑
𝑦𝑦

= 𝜇𝜇𝑦𝑦 ⋅ 𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑦𝑦 ⋅ 𝑑𝑑𝑧𝑧𝑦𝑦 

(2) 

 

with 𝑑𝑑𝑧𝑧𝑖𝑖, 𝑑𝑑𝑧𝑧𝑦𝑦 as increments of Wiener processes and independence across these Wiener 
processes 𝐸𝐸�𝑑𝑑𝑧𝑧𝑖𝑖𝑑𝑑𝑧𝑧𝑦𝑦� = 0.  

Firms can exercise growth options related to idiosyncratic and systematic opportunities. Following 

Babenko, Boguth and Tserlikevich, 2016, we assume that these growth options can be separately 

exercised to increase profits by a factor (1 + 𝛾𝛾), with 𝛾𝛾𝑥𝑥 denoting the growth effect for 

idiosyncratic growth options and 𝛾𝛾𝑦𝑦 the effect for systematic growth options. Exercise of these 

growth options required an investment of 𝐶𝐶𝑥𝑥, while the cost for systematic growth options is 𝜌𝜌𝑖𝑖𝐶𝐶𝑦𝑦.  

Expected firm value at interest rate 𝑟𝑟 is given by  

𝑉𝑉𝑖𝑖 = 𝐸𝐸�∫ Π𝑖𝑖 ⋅ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑� (3) 
 

Due to option separability and our assumptions on the risk processes, Ito’s Lemma implies the 

following Hamilton-Jacobi-Bellman equation: 

𝑟𝑟𝑉𝑉𝑖𝑖 = Π𝑖𝑖 + 𝜇𝜇𝑥𝑥𝑥𝑥𝑖𝑖
𝜕𝜕𝑉𝑉𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜇𝜇𝑦𝑦𝑦𝑦
𝜕𝜕𝑉𝑉𝑖𝑖
𝜕𝜕𝜕𝜕

+
𝜎𝜎𝑥𝑥2𝑥𝑥𝑖𝑖2

2
 
𝜕𝜕2𝑉𝑉𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖2

+
𝜎𝜎𝑦𝑦2𝑦𝑦2

2
 
𝜕𝜕2𝑉𝑉𝑖𝑖
𝜕𝜕𝑦𝑦2

 
(4)  

 

Option Exercise of Growth Options 

 
2 We are grateful to an anonymous referee for suggesting to extend our methodology and analysis to capture 
idiosyncratic as well as systematic growth opportunity shocks.  
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Following Babenko et al.s’ “Guess and verify” approach, one can postulate the following closed 

form for the value function:  

𝑉𝑉(𝑥𝑥𝑖𝑖 ,  𝑦𝑦) =
𝑥𝑥𝑖𝑖

𝑟𝑟 − 𝜇𝜇𝑥𝑥
+

𝑦𝑦
𝑟𝑟 − 𝜇𝜇𝑦𝑦

+ 𝐴𝐴 ⋅ 𝑦𝑦𝑏𝑏 + 𝐵𝐵 ⋅ 𝑥𝑥𝑖𝑖𝑑𝑑 (5)  

in which the terms 𝑥𝑥𝑖𝑖
𝑟𝑟 −𝜇𝜇𝑥𝑥

, 𝑦𝑦
𝑟𝑟 −𝜇𝜇𝑦𝑦

 capture the perpetuity value of assets-in-place, while the terms  𝐴𝐴 ⋅

𝑦𝑦𝑏𝑏� ,𝐵𝐵 ⋅ 𝑥𝑥𝑖𝑖𝑑𝑑
�  capture the option value of unexercised systematic and idiosyncratic growth options. 

Importantly, the coefficients 𝑏𝑏�, 𝑑̂𝑑 are the positive roots of the following characteristic equations 

implied by the dynamic law of motions in (2):  

𝑑𝑑2𝜎𝜎𝑥𝑥2 + 𝑏𝑏(2𝜇𝜇𝑥𝑥 − 𝜎𝜎𝑥𝑥2) − 2𝑟𝑟 = 0 

𝑏𝑏2𝜎𝜎𝑦𝑦2 + 𝑏𝑏�2𝜇𝜇𝑦𝑦 − 𝜎𝜎𝑦𝑦2� − 2𝑟𝑟 = 0 

(6) 

In other words, the changes in expected future profits 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦 as well as changes in expected 

uncertainty 𝜎𝜎𝑥𝑥2,𝜎𝜎𝑦𝑦2 change the coefficients 𝑏𝑏�, 𝑑̂𝑑. The optimal option exercise thresholds can be 

derived using the appropriate value-matching and smooth-pasting conditions discussed for 

example in Dixit (1993). Specifically, after option exercise, the present value of the firm is  

𝑉𝑉�(𝑥𝑥𝑖𝑖 ,  𝑦𝑦) =
(1 + 𝛾𝛾𝑥𝑥) ⋅ 𝑥𝑥𝑖𝑖
𝑟𝑟 − 𝜇𝜇𝑥𝑥

+
�1 + 𝛾𝛾𝑦𝑦� ⋅ 𝑦𝑦
𝑟𝑟 − 𝜇𝜇𝑦𝑦

 

 

(7)  

Post-exercise firm value can then be used to establish optimality conditions, such as the value 

matching conditions, which state that at the time of the option exercise the pre-exercise firm value 

has to equal to post-exercise firm value 

𝑉𝑉(𝑥𝑥∗,𝑦𝑦) = 𝑉𝑉�(𝑥𝑥∗,  𝑦𝑦) − 𝐶𝐶𝑥𝑥 
𝑉𝑉(𝑥𝑥𝑖𝑖 , 𝑦𝑦∗) = 𝑉𝑉�(𝑥𝑥𝑖𝑖 ,  𝑦𝑦∗) − 𝜌𝜌𝑖𝑖 ⋅ 𝐶𝐶𝑦𝑦 

 

(8)  

and smooth-pasting conditions, which state that the marginal benefit of firm value with respect to 

flow profits is equalized before and after option exercise.  

𝑉𝑉𝑥𝑥(𝑥𝑥∗,𝑦𝑦) = 𝑉𝑉�𝑥𝑥(𝑥𝑥∗,  𝑦𝑦) 
𝑉𝑉𝑦𝑦(𝑥𝑥𝑖𝑖 , 𝑦𝑦∗) = 𝑉𝑉�𝑦𝑦(𝑥𝑥𝑖𝑖 ,  𝑦𝑦∗) 

(9)  

 

Babenko et al. 2016 show that the optimal option exercise cutoffs take the form  
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𝑥𝑥∗ =
𝑑̂𝑑

𝑑̂𝑑 − 1
⋅

(𝑟𝑟 − 𝜇𝜇𝑥𝑥)𝐶𝐶𝑥𝑥
𝛾𝛾𝑥𝑥

 

𝑦𝑦∗ =
𝑏𝑏�

𝑏𝑏� − 1
⋅
�𝑟𝑟 − 𝜇𝜇𝑦𝑦�𝐶𝐶𝑦𝑦

𝛾𝛾𝑦𝑦
 

(10) 

As is well-known, 𝑑𝑑�

𝑑𝑑�−1
> 1 and 𝑏𝑏�

𝑏𝑏�−1
> 1 are the option value multiples incorporating the value of 

waiting. Without this multiple, growth options should be exercised whenever their present value 

is positive, i.e. 𝑥𝑥
∗⋅𝛾𝛾𝑥𝑥

𝑟𝑟−𝜇𝜇𝑥𝑥
> 𝐶𝐶𝑥𝑥 and 𝑦𝑦

∗⋅𝛾𝛾𝑦𝑦
𝑟𝑟−𝜇𝜇𝑦𝑦

> 𝐶𝐶𝑦𝑦. Additionally, the effect of risk on option exercise and 

therefore investment enters through these option value multiples as argued in the context of 

equation (6).  

 

R&D Capital and Empirical Predictions  

To introduce R&D capital in a way similar to our empirical setup.  We denote by 𝑅𝑅𝑥𝑥,  𝑅𝑅𝑦𝑦 the 

number of existing idiosyncratic and systematic growth options. These currently existing growth 

options are assumed to be the result of the sum of past R&D efforts. In other words, R&D capital 

captures eventual outcomes of past R&D projects that successfully generated growth options, even 

if these processes mature only with a time lag. Given an overall R&D capital stock 𝑅𝑅, we also 

assume that the fraction of idiosyncratic systematic growth options stays constant as firms increase 

their R&D capital stock, i.e. the shares 𝑠𝑠𝑥𝑥 = 𝑅𝑅𝑥𝑥
𝑅𝑅

, 𝑠𝑠𝑦𝑦 = 𝑅𝑅𝑦𝑦
𝑅𝑅

 stay constant.  

Given the cumulative density functions for outcomes 𝑥𝑥,𝑦𝑦 are given by 𝐹𝐹𝑥𝑥(. ),𝐹𝐹𝑦𝑦(.) overall 

investment from the exercise of growth options can be written as 

𝐼𝐼𝑖𝑖 = �𝑠𝑠𝑥𝑥 ⋅ � 𝑑𝑑𝐹𝐹𝑥𝑥(𝑥𝑥)
∞

𝑥𝑥∗
+ 𝑠𝑠𝑦𝑦 ⋅ � 𝑑𝑑𝐹𝐹𝑦𝑦(𝑦𝑦)

∞

𝑦𝑦∗
� ⋅ R 

= �1 − 𝐹𝐹𝑥𝑥 �
𝑑𝑑

𝑑𝑑 − 1
⋅

(𝑟𝑟 − 𝜇𝜇𝑥𝑥)𝐶𝐶𝑥𝑥
𝛾𝛾𝑥𝑥

�� 𝑠𝑠𝑥𝑥 ⋅ 𝑅𝑅 + �1 − 𝐹𝐹𝑦𝑦 �
𝑑𝑑

𝑑𝑑 − 1
⋅
�𝑟𝑟 − 𝜇𝜇𝑦𝑦�𝐶𝐶𝑦𝑦

𝛾𝛾𝑦𝑦
��  𝑠𝑠𝑦𝑦 ⋅ 𝑅𝑅 

 

(11) 

 

Equation (11) can now be used to derive our core empirical predictions on the interaction of shocks 

to growth opportunities and R&D capital. On the one hand, higher exogenous R&D capital should 

make firm investment more responsive to changes in expected average profit growth: 
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𝜕𝜕2𝐼𝐼𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇𝑥𝑥

= 𝑠𝑠𝑥𝑥 ⋅ 𝑓𝑓𝑥𝑥(𝑥𝑥∗) ⋅ �
𝑑̂𝑑

𝑑̂𝑑 − 1
� ⋅ �

𝐶𝐶𝑥𝑥
𝛾𝛾𝑥𝑥
� > 0 

𝜕𝜕𝐼𝐼𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜇𝜇𝑦𝑦

= 𝑠𝑠𝑦𝑦 ⋅ 𝑓𝑓𝑦𝑦(𝑦𝑦∗) ⋅ �
𝑏𝑏�

𝑏𝑏� − 1
� ⋅ �

𝐶𝐶𝑦𝑦
𝛾𝛾𝑦𝑦
� > 0 

 

(12) 

Intuitively, higher levels of R&D capital means that a firm has more accumulated growth options, 

which in turn will make the firm more sensitive to higher average expected profits for these growth 

options 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦.  

On the other hand, higher exogenous R&D capital should make firms delay investments more in 

response to uncertainty shocks: 

𝜕𝜕2𝐼𝐼𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜎𝜎𝑥𝑥2

=  −𝑠𝑠𝑥𝑥 ⋅ 𝑓𝑓𝑥𝑥(𝑥𝑥∗) ⋅
𝜕𝜕𝑥𝑥∗

𝜕𝜕𝜎𝜎𝑥𝑥2
< 0 

𝜕𝜕2𝐼𝐼𝑖𝑖
𝜕𝜕𝜕𝜕𝜕𝜕𝜎𝜎𝑦𝑦2

=  −𝑠𝑠𝑦𝑦 ⋅ 𝑓𝑓𝑦𝑦(𝑦𝑦∗) ⋅
𝜕𝜕𝑦𝑦∗

𝜕𝜕𝜎𝜎𝑦𝑦2
< 0 

 

(13) 

with 𝜕𝜕𝑥𝑥
∗

𝜕𝜕𝜎𝜎𝑥𝑥2
< 0 and 𝜕𝜕𝑦𝑦

∗

𝜕𝜕𝜎𝜎𝑦𝑦2
, as increased uncertainty will increase the optimal exercise time for growth 

options. Intuitively, more uncertainty about the value of growth options will delay their exercise 

time since it increases the option value of waiting, captured by the option value multiples 

� 𝑑𝑑�

𝑑𝑑�−1
� , � 𝑏𝑏�

𝑏𝑏�−1
�. This in turn will delay a larger part of investment if the firm has more growth 

options, i.e. has more R&D capital.  

The results in (12) and (13) can also be used to hypothesize about the relative size of investment 

responses to changes in average growth 𝜇𝜇 and uncertainty 𝜎𝜎. For example, one might expect that 

firms tend to generate more idiosyncratic growth options than systematic growth options, since 

such idiosyncratic growth options are more likely to provide them with a competitive advantage, 

see Barney, 1986. In terms of our model, 𝑠𝑠𝑥𝑥 > 𝑠𝑠𝑦𝑦, so that all other things equal, we would expect 

that investment responses to idiosyncratic shocks to 𝜇𝜇𝑥𝑥,𝜎𝜎𝑥𝑥 are larger in absolute value than 

responses to systematic shocks to 𝜇𝜇𝑦𝑦,𝜎𝜎𝑦𝑦. 

 

3. Empirical Methodology 
3.1 Abnormal returns 
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The key idea of our measures of news and uncertainty shocks mirrors the logic of event studies 

see Campbell, Lo, Mackinlay, 1997; Kothari and Warner 2007, which in turn builds on the efficient 

market hypothesis. If stock prices correctly reflect expectations of financial market participants on 

future fundamentals, any changes in these expectations should induce changes in stock prices. 

These changes in stock prices in turn, will be measured by the stock returns 𝑟𝑟𝑖𝑖,𝑡𝑡+1 = 𝑝𝑝𝑖𝑖,𝑡𝑡+1 − 𝑝𝑝𝑖𝑖,𝑡𝑡, 

where  𝑝𝑝𝑖𝑖,𝑡𝑡 are log stock prices for firm 𝑖𝑖 in period 𝑡𝑡. However, this baseline logic needs to consider 

that even without any news, stock prices should be expected to predictably change based on time 

and risk compensation, captured by the expected returns 𝐸𝐸𝜏𝜏[𝑟𝑟𝑖𝑖,𝜏𝜏+1]. Indeed, Fama in 2012 stated 

that “Market Efficiency means that deviations from equilibrium expected returns are unpredictable 

based on currently available information. But equilibrium expected returns can vary through time 

in a predictable way, which means price changes need not be entirely random.” (Fama and 

Litterman, 2012). As a result, the actual object of interest, are stock returns that are adjusted to 

remove predictable return, which we call abnormal returns. Following Campbell and Shiller, 1988, 

these abnormal returns can be approximated as 

𝑟𝑟𝑖𝑖,𝑡𝑡+1 − 𝐸𝐸𝑡𝑡�𝑟𝑟𝑖𝑖,𝑡𝑡+1� = (𝐸𝐸𝑡𝑡+1 − 𝐸𝐸𝑡𝑡)�𝜌𝜌𝜏𝜏Δ𝑑𝑑𝑖𝑖,𝑡𝑡+1+𝜏𝜏
𝜏𝜏≥0

− (𝐸𝐸𝑡𝑡+1 − 𝐸𝐸𝑡𝑡)�𝜌𝜌𝜏𝜏𝑟𝑟𝑖𝑖,𝑡𝑡+1+𝜏𝜏
𝜏𝜏≥1

  (14)  

 

Abnormal returns can therefore be interpreted to capture three types of surprises. First, abnormal 

returns might be high because the current dividend was surprisingly high. Second, abnormal 

returns can signal revisions of expectations on future dividends and therefore future profits. Third, 

abnormal returns can reflect surprises on the expectations of future expected discount rates. As is 

well-known, current dividend surprises can only explain a very small fraction of the variation of 

stock returns, see Campbell and Shiller, 1988; Cochrane, 2008. Abnormal returns are therefore 

mostly driven by expectation revisions either on future profitability and therefore future dividends, 

or by surprises to expected discount rates. Additionally, we directly control for changes in current 

profits, which directly addresses the concern that our abnormal returns capture changes in current 

dividends.  

To extract and differentiate PVGO news and PVGO uncertainty shocks, we use time aggregation. 

Our abnormal returns are calculated on a weekly basis, while the investment data we are interested 

in is reported on a quarterly frequency. We therefore define the average surprise or abnormal return 
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within a quarter as our measure of PVGO news. The intuition behind this definition is that if 

positive surprises in one week are cancelled out by negative surprises in the next week, we would 

not expect there not be any positive or negative news “on average” within the quarter. Formally, 

we define news shocks as 

𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑖𝑖,𝑡𝑡,𝑡𝑡+1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

1
𝑁𝑁
��𝑟𝑟𝑖𝑖,𝜏𝜏+1 − 𝐸𝐸𝜏𝜏�𝑟𝑟𝑖𝑖,𝜏𝜏+1��
𝑡𝑡+1

𝜏𝜏=𝑡𝑡

  
(15) 

In contrast, uncertainty shocks within the quarter are defined by the dispersion of surprises. In 

our previous example, where the positive surprises in one week are cancelled out by negative 

surprises in the following week, we would measure an uncertainty shock within the quarter. 

Formally, we define these shocks as 

𝑈𝑈𝑈𝑈𝐶𝐶𝑖𝑖,𝑡𝑡,𝑡𝑡+1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑆𝑆𝑡𝑡,𝑡𝑡+1  �𝑟𝑟𝑖𝑖,𝜏𝜏+1 − 𝐸𝐸𝜏𝜏�𝑟𝑟𝑖𝑖,𝜏𝜏+1��  (16) 

 

3.2 Normal Returns and Recovery Theorem 
As mentioned before, our methodology builds on abnormal returns. While realized returns are easy 

to measure, it is the construction of the expected returns 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1], that is the biggest challenge for 

calculating abnormal returns. This is especially true in the presence of time variation in risk premia, 

which has been widely documented to be an important aspect of the data, see Campbell and 

Cochrane, 1999 and Cochrane, 2008.  

One particularly attractive source of information for expected returns are option prices on stock 

returns, in our case options on the S&P 500 index. The reason is that information on the strike 

levels of option portfolios, combined with option prices allows one to potentially recover data in 

state probabilities that can be used to construct expected returns on the underlying asset, in our 

case 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1], see Breeden and Litzenberger, 1978. Formally, let  𝑓𝑓𝑘𝑘𝑘𝑘 denote the state probabilities 

of moving from state 𝑘𝑘 to state 𝑙𝑙, such as a transition from an S&P 500 index value of 1000 to a 

value of 1200.  The Breeden and Litzenberger methodology enables us to measure state prices 𝜆𝜆𝑘𝑘𝑘𝑘, 

using a Butterfly spread portfolio, that pays off $1 in state 𝑙𝑙, given that today’s state is 𝑘𝑘. State 

prices 𝜆𝜆𝑘𝑘𝑘𝑘 are not enough to calculate returns 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1], since they combine the effects of differences 

in state probabilities with the effects of risk adjustment. To extract state probabilities 𝑓𝑓𝑘𝑘𝑘𝑘 from these 

state prices we require the usage of some functional form assumptions on the stochastic discount 
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factor (SDF), to separate state probabilities from risk adjustment. Our baseline assumes time 

separability of risk preferences of a representative investor, and closely follows Ross, 2015.  Let 

𝜆𝜆𝑘𝑘𝑘𝑘 denote state prices of future state j to current state i.  

𝜆𝜆𝑘𝑘𝑘𝑘 = �
𝛿𝛿𝑈𝑈𝑙𝑙′

𝑈𝑈𝑘𝑘′
� ⋅ 𝑓𝑓𝑘𝑘𝑘𝑘 

 

(17) 

Where 𝛿𝛿 is the one-period discount factor and 𝑈𝑈𝑘𝑘′  is the marginal utility of wealth in state 𝑘𝑘. 
Define 𝑧𝑧𝑘𝑘 = 1

𝑈𝑈𝑘𝑘
′  and impose ∑ 𝑓𝑓𝑘𝑘𝑘𝑘𝑙𝑙 = 1 as 𝑓𝑓𝑖𝑖𝑖𝑖 are probabilities. Then we can rewrite this in matrix 

notation as 

Λ ⋅ 𝑧𝑧 = 𝛿𝛿 ⋅ 𝑧𝑧 
 

(18) 

Where 𝑧𝑧 = � 1
𝑈𝑈1′

, … , 1
𝑈𝑈𝑆𝑆
′�, so the recovery of state probabilities reduces to an eigenvector problem. 

The intuition for this approach is that for the matrix of state prices Λ is a sufficient statistic for the 

valuation effects of discounting, incorporating both the time discounting 𝛿𝛿 as well as the risk 

adjustment 
𝑈𝑈𝑗𝑗
′

𝑈𝑈𝑖𝑖
′ under separable preferences. Therefore, once the state price matrix is measured, and 

under the additional assumptions of time homogeneity and time separable preferences, recovering 

marginal utilities across states reduces to the stated eigenvector problem. Once one calculated the 

eigenvectors, one can calculate the state probabilities from state prices by 

𝑓𝑓𝑘𝑘𝑘𝑘 = �
1
𝛿𝛿�

⋅ �
𝑧𝑧𝑙𝑙
𝑧𝑧𝑘𝑘
� 𝜆𝜆𝑘𝑘𝑘𝑘  

(19) 

With these state probabilities at hand, we can calculate 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1]. 

 

3.3 Extension to Firm-Specific Abnormal Returns 

Until now, our methodology only allows us to construct 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1] and therefore systematic 

abnormal returns 𝑟𝑟𝑡𝑡+1 − 𝐸𝐸𝑡𝑡[𝑟𝑟𝑡𝑡+1], but does not cover firm-specific abnormal returns 𝑟𝑟𝑖𝑖,𝑡𝑡+1 −

𝐸𝐸𝑡𝑡[𝑟𝑟𝑖𝑖,𝑡𝑡+1]. In this section we extend our method to enable us to measure such firm-specific 

PVGO shocks. Under the same assumptions as in the last section, we can write the stochastic 

discount factor (SDF) as 



12 
 

𝑀𝑀𝑡𝑡+1 = 𝑀𝑀𝑘𝑘𝑘𝑘 = 𝛿𝛿
𝑈𝑈𝑙𝑙′

𝑈𝑈𝑘𝑘′
= 𝛿𝛿 �

𝑧𝑧𝑘𝑘
𝑧𝑧𝑙𝑙
�  

(20) 

Furthermore, for every stock return, it is true that 

𝐸𝐸𝑡𝑡�𝑀𝑀𝑡𝑡+1�𝑟𝑟𝑖𝑖,𝑡𝑡+1 − 𝑟𝑟𝑓𝑓,𝑡𝑡+1�� = 0  (21) 

where 𝑟𝑟𝑖𝑖,𝑡𝑡+1 is the net stock return for firm 𝑖𝑖 and 𝑟𝑟𝑓𝑓,𝑡𝑡+1 is the risk-free rate. By the definition of a 

covariance (21) can be rewritten as 0 =  𝐸𝐸𝑡𝑡[𝑀𝑀𝑡𝑡+1] ⋅ �𝐸𝐸𝑡𝑡�𝑟𝑟𝑖𝑖,𝑡𝑡+1� − 𝑟𝑟𝑓𝑓,𝑡𝑡+1� + 𝐶𝐶𝐶𝐶𝑣𝑣𝑡𝑡�𝑀𝑀𝑡𝑡+1, 𝑟𝑟𝑖𝑖,𝑡𝑡+1 −

𝑟𝑟𝑓𝑓,𝑡𝑡+1 �, which we can then in turn solve for 𝐸𝐸𝑡𝑡�𝑟𝑟𝑖𝑖,𝑡𝑡+1� 

𝐸𝐸𝑡𝑡�𝑟𝑟𝑖𝑖,𝑡𝑡+1� = 𝑟𝑟𝑓𝑓,𝑡𝑡+1 −
𝐶𝐶𝐶𝐶𝑣𝑣𝑡𝑡�𝑀𝑀𝑡𝑡+1, 𝑟𝑟𝑖𝑖,𝑡𝑡+1 �

𝐸𝐸𝑡𝑡[𝑀𝑀𝑡𝑡+1]  

  

(22) 

In other words, once we have measured the SDF (20) using the solution to eigenvector problem 

(18), we can simply derive firm-specific expected returns 𝐸𝐸𝑡𝑡�𝑟𝑟𝑖𝑖,𝑡𝑡+1� using the firm-specific 

covariance of stock return 𝑟𝑟𝑖𝑖,𝑡𝑡+1 with the SDF to capture systematic risk. This is a generalization 

of CAPM, which uses information from options markets to construct the SDF 𝑀𝑀𝑡𝑡+1 instead of 

relying on market returns and capital market equilibrium as in CAPM. We can then use the results 

from (22) in (14) to measure firm-specific abnormal returns.  

 

3.4 Exogenous R&D capital stocks 

To estimate the empirical counterparts of equations (12) and (13) we will need to analyze 

interaction effects between PVGO shocks and the number of growth options. As suggested in our 

theory section, we think of this number of growth options as the output of an innovation process, 

with R&D as the key input. At the same time, we are keenly aware that a use of current R&D 

expenditure would be problematic from at least two perspectives. First, R&D spending is likely to 

be driven by a variety of unobserved firm-level factors, such a long-term orientation (Edmans, 

2011) or CEO leadership style (Bertrand and Schoar, 2003), which in turn are also likely to be 

directly correlated with corporate investment. We refer to this problem as the “endogeneity 

problem of R&D”.   Second, it is well-known that innovation is an uncertain, time-delayed process 

in which innovation results are not known until years later. Indeed, the theoretical work in asset 

pricing using growth options, such as Berk et al. 1999 and Kumar and Li, 2016 assumes that 
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innovation is such a multi-stage process. We refer to this as the “time lag problem of R&D”. Our 

empirical strategy to proxy for the number of growth options with R&D is intended to address 

both of these empirical problems.  

We address the “endogeneity problem of R&D” by using state-level R&D tax credits as instrument 

for past R&D expenditures. This empirical strategy has been used by studies on economics, such 

as Bloom, Schankerman and Van Reenen, 2013 as well as finance studies such as Hombert and 

Matray, 2018. Since the introduction of the first federal R&D tax credit in 1981, US states have 

increasingly adoption state-level versions of an R&D tax credit. The process started with the 

adoption the first state-level R&D tax credit in Minnesota in 1982 and has continued until today. 

During this time, the number of states adopting R&D tax credits has risen to over 30, and the value 

of the credits themselves has increased by a factor of more than four. At the same time, R&D tax 

credits strongly vary in the cross section of states, starting at a minimum value of 2.5% in states 

like South Carolina and Minnesota to a maximum value of 20% for states like Arizona and Hawaii. 

As a result, changes in the state-level R&D tax credit offer a lot of exogenous variation across 

states and over time, as exemplified by California, which changed its R&D tax credit five times 

between 1987 and 2010. This variation is especially useful, since the large corporations we analyze 

typically have R&D facilities in a variety of states, thereby enabling us to construct firm-specific 

R&D tax-credit induced R&D expenditures by exploiting the distribution of patenting across states 

for each firm. We follow the methodology of Bloom et al., 2013 who begin by first noting that a 

firm’s user cost of capital (Hall-Jorgenson user cost of capital equation) can be decomposed into 

two parts of an equation: one that varies by firm and one that does not. More specifically, they 

define the firm’s user cost of capital as: 

𝜌𝜌𝑖𝑖,𝑡𝑡𝑈𝑈 =
(1 − 𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡)
(1 − 𝑇𝑇𝑖𝑖,𝑡𝑡)

�𝑟̃𝑟𝑡𝑡 + 𝛿𝛿𝑅𝑅𝑅𝑅 −  
∆𝑃𝑃𝑡𝑡𝑅𝑅

𝑃𝑃𝑡𝑡−1𝑅𝑅
�  

(23) 

where 𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡 is the discounted value of  tax credits, 𝑇𝑇𝑖𝑖,𝑡𝑡 is the corporate tax rate (inclusive of both 

the federal and state tax rates) , 𝑟̃𝑟𝑡𝑡 is the real interest rate, 𝛿𝛿𝑅𝑅𝑅𝑅 is the depreciation rate, and ∆𝑃𝑃𝑡𝑡
𝑅𝑅

𝑃𝑃𝑡𝑡−1
𝑅𝑅  is 

the growth rate of the R&D capital asset price. Since Bloom et al., 2013 are interested in deriving 

a measure of firm-specific R&D expenditures and since �𝑟̃𝑟𝑡𝑡 + 𝛿𝛿𝑅𝑅𝑅𝑅 −  ∆𝑃𝑃𝑡𝑡
𝑅𝑅

𝑃𝑃𝑡𝑡−1
𝑅𝑅 �  is not firm specific, 

they focus on the tax price component of the user cost equation: 𝜌𝜌𝑖𝑖,𝑡𝑡𝑈𝑈 = (1−𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡)
(1−𝑇𝑇𝑖𝑖,𝑡𝑡)

. This tax price 
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component of the user cost can further be decomposed into a “firm-specific” portion, 𝜌𝜌𝑖𝑖,𝑡𝑡𝐹𝐹 , and a 

“state-level” portion, 𝜌𝜌𝑖𝑖,𝑡𝑡𝑆𝑆 . They define the state component of the tax price as: 

𝜌𝜌𝑖𝑖,𝑡𝑡𝑆𝑆 = �𝜃𝜃𝑖𝑖,𝑠𝑠,𝑡𝑡𝜌𝜌𝑠𝑠,𝑡𝑡
𝑆𝑆

𝑠𝑠

  (24) 

where 𝜌𝜌𝑠𝑠,𝑡𝑡
𝑆𝑆  is the state-level tax price and 𝜌𝜌𝑠𝑠,𝑡𝑡

𝑆𝑆  is each firm i’s 10-year moving average share of 

inventors in a particular state, s. The state-by-year tax price data is obtained from Wilson, 2009. 

At the same time, Bloom et al., 2013 use the inventor location information from USPTO patent 

files to measure the different locations in which firms have R&D facilities that are subject to 

different state-level R&D tax credits. Bloom et al., 2013 then test the validity of their instrumental 

variable by projecting the R&D expenditure variable on their instruments and find that the state-

level tax credit has considerable power as an IV for R&D expenditures. 

A natural concern at this point might be that state-level R&D tax credits themselves might be 

driven by state-level economic environments. However, both Bloom et al., 2013 and Hombert and 

Matray, 2018 analyze the R&D tax credit changes and find no evidence of any systematic 

correlation of R&D tax credits with state-level economic variables, once state and year fixed 

effects are included in the analysis. Furthermore, it should be noted that even if state R&D tax 

credits are correlated with state-level economic fundamentals, our analysis remains well-identified 

as long as such state fundamentals are not systematically correlated with the unobserved firm-level 

factors, such as CEO style or long-termism, that we aim to exclude from the analysis. Since most 

of the firms we analyze have R&D facilities in multiple states, such as correlation is unlikely.  

To address the “time lag problem of R&D”, we follow Bloom et al. 2013 and use a perpetual 

inventory method to construct exogenous capital stocks based on R&D-tax credit induced R&D 

expenditures. In particular, current R&D capital is the discounted sum of past R&D expenditures:  

𝑅𝑅𝑖𝑖,𝑡𝑡𝑥𝑥 = 𝑋𝑋𝑋𝑋�𝑡𝑡 + (1 − 𝛿𝛿𝑅𝑅𝑅𝑅) ⋅ 𝑅𝑅𝑡𝑡−1𝑥𝑥 = �(1 − 𝛿𝛿𝑅𝑅𝑅𝑅)𝑡𝑡−𝜏𝜏 ⋅ 𝑋𝑋𝑋𝑋�𝑡𝑡−𝜏𝜏

𝑡𝑡

𝜏𝜏=0

  
(25) 

where 𝑋𝑋𝑋𝑋�𝑡𝑡 are R&D-tax credit induced R&D expenditures, and 𝛿𝛿𝑅𝑅𝑅𝑅 is the depreciation rate of 

R&D capital, which we set to 𝛿𝛿𝑅𝑅𝑅𝑅=0.15, following the analysis of Hall, Jaffe and Trajtenberg, 

2004. Using this perpetual inventory method to summarize past R&D expenditures into a current 

R&D capital stock has several advantages. First, it directly addresses the “time lag problem of 
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R&D” by using an accumulated capital stock in which past expenditures enter with geometrically 

declining importance. As a result, past R&D has several years to be able to impact the current 

stock of growth options available to the firm. Second, the use of R&D capital stocks also facilitates 

identification, since it is past state-level R&D tax credits that enter into current R&D capital stocks 

as well. As a result, even if current R&D tax credits are correlated with current unobservable firm 

factors, such as CEO style, such unobservable current factors are less likely to be correlated with 

past state-level R&D tax credits.  

Additionally, to facilitate readability, we use standardized values of log R&D capital as our 

independent variables, so that we subtract average log R&D and divide by the standard deviation 

of log R&D. As a result, all coefficients on R&D will directly give us the impact of a one standard 

deviation change in percentage terms of R&D. 

 

3.5 Investment regression specifications 
We build on the empirical literature on the determinants of corporate investments, especially 

Eberly, Rebelo and Vincent (2012) for our empirical model. Specifically, our regression 

specification will be of the form 

�
𝐼𝐼
𝐾𝐾�𝑖𝑖,𝑡𝑡

= 𝛽𝛽0 + 𝛽𝛽1 ⋅ �
𝐼𝐼
𝐾𝐾�𝑖𝑖,𝑡𝑡−1

+ 𝛽𝛽2 ⋅ 𝑙𝑙𝑙𝑙 𝑄𝑄𝑖𝑖,𝑡𝑡 + 𝛽𝛽3 ⋅ 𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶𝐶𝐶)𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝜖𝜖𝑖𝑖,𝑡𝑡 

                    + 𝛽𝛽4 ⋅ 𝑙𝑙𝑙𝑙 𝑅𝑅𝑖𝑖,𝑡𝑡𝑥𝑥 + 𝛽𝛽𝑁𝑁𝑆𝑆 ⋅ 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑡𝑡,𝑡𝑡+1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑈𝑈𝑆𝑆 ⋅ 𝑈𝑈𝑈𝑈𝐶𝐶𝑡𝑡,𝑡𝑡+1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

                   + 𝜷𝜷𝑵𝑵,𝑹𝑹
𝑺𝑺 ⋅ 𝑵𝑵𝑵𝑵𝑵𝑵𝑺𝑺𝒕𝒕,𝒕𝒕+𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 × 𝒍𝒍𝒍𝒍𝑹𝑹𝒊𝒊,𝒕𝒕𝒙𝒙 + 𝜷𝜷𝑼𝑼,𝑹𝑹

𝑺𝑺 ⋅ 𝑼𝑼𝑼𝑼𝑼𝑼𝒕𝒕,𝒕𝒕+𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 × 𝒍𝒍𝒍𝒍𝑹𝑹𝒊𝒊,𝒕𝒕𝒙𝒙  

                   +𝛽𝛽𝑁𝑁𝐼𝐼 ⋅ 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑖𝑖,𝑡𝑡,𝑡𝑡+1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑈𝑈𝐼𝐼 ⋅ 𝑈𝑈𝑈𝑈𝐶𝐶𝑖𝑖,𝑡𝑡,𝑡𝑡+1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

                   + 𝜷𝜷𝑵𝑵,𝑹𝑹
𝑰𝑰 ⋅ 𝑵𝑵𝑵𝑵𝑵𝑵𝑺𝑺𝒊𝒊,𝒕𝒕,𝒕𝒕+𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 × 𝒍𝒍𝒍𝒍𝑹𝑹𝒊𝒊,𝒕𝒕𝒙𝒙 + 𝜷𝜷𝑼𝑼,𝑹𝑹

𝑰𝑰 ⋅ 𝑼𝑼𝑼𝑼𝑼𝑼𝒊𝒊,𝒕𝒕,𝒕𝒕+𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 × 𝒍𝒍𝒍𝒍𝑹𝑹𝒊𝒊,𝒕𝒕𝒙𝒙  

 

(26) 

where �𝐼𝐼
𝐾𝐾
�
𝑖𝑖.𝑡𝑡

is the investment rate as percentage of capital, for firm 𝑖𝑖 at time 𝑡𝑡, and is the dependent 

variable of interest. Our main independent variables are measures of news and uncertainty shocks, 

interacted with exogenous R&D capital stocks. We use  𝑙𝑙𝑙𝑙 𝑅𝑅𝑖𝑖,𝑡𝑡𝑥𝑥  to denote the log of exogenous 

R&D capital, calculated according to (23). Additionally, we use 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑡𝑡,𝑡𝑡+1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑈𝑈𝑈𝑈𝐶𝐶𝑡𝑡,𝑡𝑡+1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to 

denote systematic (or common) PVGO shocks and 𝑁𝑁𝑁𝑁𝑁𝑁𝑆𝑆𝑖𝑖,𝑡𝑡,𝑡𝑡+1
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and 𝑈𝑈𝑈𝑈𝐶𝐶𝑖𝑖,𝑡𝑡,𝑡𝑡+1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  for PVGO shocks 
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specific to firm 𝑖𝑖3. Importantly, when we include both systematic and firm-specific PVGO shocks, 

we expect the coefficients on the systematic PVGO shocks to capture the investment responses to 

systematic PVGO shocks, while the coefficients on firm-specific PVGO shocks should capture the 

responses to idiosyncratic PVGO shocks, by the Frisch-Waugh Theorem. All specifications with 

interaction terms will always also include the un-interacted baseline variables the interactions 

consist of.  

In addition to these main variables of interest, we also include a number of additional variables, 

that have been shown to significantly influence corporate investment in the literature. The first of 

these additional control variables is Tobin’s Q, for which we include a logged version of the 

variable, denoted by 𝑙𝑙𝑙𝑙 𝑄𝑄𝑖𝑖,𝑡𝑡. According to standard neoclassical investment theory, as formalized 

in Hayashi, 1982 and Abel and Eberly, 1994, Tobin’s Q should be a sufficient statistic governing 

corporate investment. As a result, from the perspective of neoclassical investment theory, our 

measures of PVGO shocks should have no additional value to explaining corporate investment 

behavior. However, it is well known that Tobin’s Q as measured in the data does not provide such 

a sufficient statistic, partly due to measurement error, see Alti, 2003. Importantly, even if Tobin’s 

Q would be measured without noise, we would expect it to reflect both the value of growth 

opportunities as well as the value of assets-in-place4. We therefore include Tobin’s Q to control 

for the value of assets-in-place.  

The second main control variable is 𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶𝐶𝐶)𝑖𝑖,𝑡𝑡, which measures cash flow as a percentage of total 

assets. Cash-flow variables such as this have a long, albeit somewhat controversial tradition in the 

finance literature. On the one hand, a literature following Farazzi, Hubbard and Petersen, 1988 has 

argued that investment responses to cash-flow reflect financial frictions. On the other hand, a 

literature following Alti, 2003 argues that current cash flows are a signal of future profitability and 

should therefore be included in investment regressions, because Tobin’s Q is too noisy of a 

measure to capture near-term profitability well. We take no particular stance on this debate, but 

instead add cash flow as control variable to ensure robustness.  

 
3 We measure these shocks in the quarter up to the reporting time of the dependent variable to approximate 
contemporaneous impacts news and uncertainty shocks on investment. 
4 These are the first two terms on the right hand side of equation (5).  
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The third main control variable is lagged investment �𝐼𝐼
𝐾𝐾
�
𝑖𝑖.𝑡𝑡−1

, following Eberly, Rebelo and 

Vicent, 2012, which is motivated by the macroeconomic investment literature, such as Christiano 

Eichenbaum and Evans, 1999, and shows that lagged investment is an important determinant of 

corporate investment behavior.   

In addition to these control variables, our specifications also include a full set of firm fixed effects 

𝐷𝐷𝑖𝑖, which we use to control for any time-invariant or highly persistent unobservable factors that 

might influence corporate investment. We note that in most specifications, we will use a 

combination of a lagged dependent variable �𝐼𝐼
𝐾𝐾
�
𝑖𝑖.𝑡𝑡−1

 with firm fixed effects 𝐷𝐷𝑖𝑖. Whenever this 

happens, we use Arellano-Bond Dynamic Panel estimators to correctly estimate the coefficients 

on all variables.5  

We also note that our data will consist of large, public firms, which have been shown to exhibit 

much smoother investment patterns than the lumpy establishment level investment patterns, as 

emphasized by Cooper and Haltiwanger (2006). Since the degree of lumpiness firm investment 

patterns varies a lot, we will explicitly take account of the potentially lumpy nature of investment 

in our extensions in section 6. 

 

4. Data 
In this section, we give an overview of the data used to construct our PVGO news and uncertainty 

shock measures, our investment outcomes and our exogenous R&D capital stocks. We used three 

types of data: option price data, primarily obtained from the OptionMetrics database, firm-level 

data, primarily obtained from the merged Compustat/CRSP database, and other data (such as 

control variables), generally obtained directly from the FRED database.   

4.1 Option price data 

All option data used to construct our PVGO shocks originate from the OptionMetrics database via 

the Wharton Research Data Services (WRDS). To construct the shocks, we use the S&P 500 option 

prices with quarterly expiration at all available intervals. In order to apply the RT, several data 

 
5 We have also confirmed that our results are broadly similar if we do not sure Arellano-Bond estimators. 
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transformations are necessary. First, following Figlewski, 2008, the option price used is the 

midpoint of the bid-ask spread. Reported strike prices are divided by 1,000 in order to convert 

them from strike prices per 1,000 stocks to strike prices per stock. We convert time-to-maturity 

from an expiration date to a fraction of years to expiration. These transformations allow us to use 

the Black-Scholes (B-S) equation to convert prices to implied volatilities Black and Scholes, 1972, 

a required step in the estimation of state price densities (Sanford, 2021).  To estimate state price 

densities (SPDs), we interpolate available option prices using a mixture of a b-spline with an at-

the-money (ATM) knot and a linear interpolation that is dependent on firm survival probability 

over certain horizons as is outlined in detail in Sanford, 2021. The b-spline with ATM knots is 

used to interpolate a full set of option prices in the strike price dimension. The linear interpolation 

with firm survival probability interpolation is used to interpolate option prices in the TTM 

dimension. Using this method allows us to obtain a full implied volatility surface which can then 

be converted to option prices using the B-S equation. Once we have a complete set of option prices, 

we estimate the SPD by taking the second derivative of option prices with respect to strike prices 

(Breeden and Litzenberger, 1978). Using SPDs, we can obtain PVGO news and uncertainty shocks 

by applying the recovery theorem by Ross, 2015. We rely on WRDS to access S&P 500 return 

data (CRSP) and the treasury bill rate (Fama-French), which we use as the risk-free rate.  

4.2 Firm level data 

Firm-level data originate from the merged Compustat/CRSP database via WRDS. The data consist 

of: investment (I), capital (K), cash flows (CF), tobin’s q (q), and profit. We follow Eberly, Rebelo, 

and Vincent (2012) to construct all variables. More specifically, investment is the expenditures on 

property, plant, and equipment. Capital is defined as the replacement value of capital stock for 

each firm using the recursion: 

 𝐾𝐾𝑖𝑖,𝑡𝑡  =  �𝐾𝐾𝑖𝑖,𝑡𝑡−1  �
𝑃𝑃𝐾𝐾,𝑡𝑡

𝑃𝑃𝐾𝐾,𝑡𝑡−1
�  +  𝐼𝐼𝑖𝑖,𝑡𝑡� (1 − δ𝑖𝑖) 

 

where 𝑃𝑃𝐾𝐾 is the price deflator for nonresidential investment, 𝐼𝐼𝑖𝑖,𝑡𝑡 is the firm’s capital expenditure, 

and δ𝑖𝑖 is the firm’s depreciation rate. Cash flow is defined as income before extraordinary events 

plus depreciation and amortization plus minor adjustments. Tobin’s Q is defined as:  
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𝑄𝑄𝑖𝑖,𝑡𝑡 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑖𝑖,𝑡𝑡−1 + 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑖𝑖,𝑡𝑡−1 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑖𝑖,𝑡𝑡−1

𝐾𝐾𝑖𝑖,𝑡𝑡
 

 

Where 𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑖𝑖,𝑡𝑡−1 is the market value of equity is the closing stock price times the number of 

common shares outstanding, 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑖𝑖,𝑡𝑡−1 is the firm’s long-term debt, and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑖𝑖,𝑡𝑡−1 is total 

inventories. Finally, profit is defined as operating income before amortization and depreciation.  

4.3 Other data 

Control variables include: unemployment, yield spread, GDP growth and GDP forecasts. The 

unemployment rate is the quarterly seasonally adjusted unemployment rate for the United States. 

GDP growth is calculated as the quarterly percentage change in the seasonally adjusted real GDP. 

We downloaded both indicators—unemployment rate and GDP growth—directly from the St-

Louis Fed’s FRED database. The quarterly GDP forecast can be found in the Survey of 

Professional Forecasters on the Federal Reserve Bank of Philadelphia’s website. Finally, to 

calculate the change in aggregate profit, we sum all firms’ profits quarterly and take the difference 

from the previous quarter.  

We present basic summary statistics for all used variables in table 1.  

[Table 1] 

5. Results 
5.1 Investment responses to PVGO Shocks 

This section provides evidence on the direct impact of PVGO news and uncertainty shocks on 

investment. Since our PVGO shocks have not previously been used in the literature on corporate 

investments, we first provide a number of validation exercises before reporting our main results.  

5.1.1 Validation of PVGO Shocks 

We begin with an analysis of the predictive value of our measures of news and uncertainty shocks. 

We first focus on systematic PVGO shocks, since they most directly incorporate risk-

compensation correction from option prices we use. As discussed in section 3.1, our measures of 

systematic PVGO news and uncertainty shocks are based on surprise movements in stock prices. 
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If the variation in returns we use indeed correctly measures surprises to market participants’ 

information sets, then two implications follow. First, because these movements are surprises, they 

should be unforecastable using other lagged variables, such as investments. In formal terms, 

investments should not Granger-cause our measures of common PVGO news and uncertainty 

shocks. Second, because the surprises and therefore our measures of common PVGO news and 

uncertainty shocks capture movements in expectations of future fundamentals, our shocks should 

have predictive value for investment. In other words, our common PVGO shocks should Granger-

cause investments.  

Table 3 summarizes Granger causality tests for our measures of systematic PVGO news and 

uncertainty shocks. The tests show that both systematic PVGO news and uncertainty shocks cannot 

be rejected to Granger-cause investments. On the flipside, lagged investments have no predictive 

value for our measures of systematic PVGO news and uncertainty shocks, so that the hypothesis 

that investments do not Granger-cause news or uncertainty shocks cannot be rejected. 

These Granger-causality tests only establish that our systematic PVGO shocks contain information 

that is helpful to predict investments, but they cannot tell us what the nature of this information is. 

In particular, even if our measures of systematic PVGO shocks would successfully proxy for 

systematic PVGO shocks, these shocks might either represent expectation revisions on future 

profits or expectation revisions on future discount rates. Both types of surprises potentially 

stimulate corporate investments. Investments might either increase in response to systematic 

PVGO shocks because firms anticipate higher profits from implementing growth options or 

because the present value of expected future profits has increased due to lower expected future 

discount rates. From a certain perspective, differentiating between these two potential explanations 

is not important for our analysis, as in both cases the present value of growth opportunities has 

increased. However, it is informative to analyze whether our PVGO shocks are mostly driven by 

discount rate news or whether they do at least partly reflect cash flow news.  

We therefore directly test whether our PVGO shocks predict firm profit growth from two 

perspectives. First, if our PVGO shocks provide some information on future profits, they should 

predict future profits. Second, since PVGO shocks are surprises to market participants, they should 

be uncorrelated with past profit growth. Since these regressions are informative about the 

informational content of PVGO shocks, we will use both the systematic and firm-specific PVGO 
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shocks we constructed. Table 3 provides evidence on the predictive value of PVGO shocks for 

profits. As the first two columns show, positive systematic PVGO news shocks are strongly 

predictive of profit growth about five quarters ahead, while PVGO uncertainty shocks are 

predictive of systematically lower profit. This negative relation between uncertainty shocks and 

profit growth is most likely the result of the systematic correlation between periods of high 

uncertainty and periods of bad news, as emphasized by Stock and Watson, 2012. The third column 

in table 3 therefore includes both uncertainty and news shocks in the profit regressions and shows 

that indeed uncertainty shocks are highly correlated with news shocks. Additionally, the same 

profit predictions hold for firm-specific PVGO shocks, with the coefficient on firm-specific PVGO 

news shocks an order of magnitude higher than the coefficient on systematic PVGO news shocks. 

As additional validation, the last three columns of table 4 show that past profit growth is not 

systematically correlated with systematic PVGO news or uncertainty shocks, as should be the case 

if our measured indeed pick up shocks to the information sets of investors.  

5.1.2 Investment Responses to PVGO Shocks and the Role of Risk-Premium 

Adjustments 

In this section, we analyze the importance of the risk-premium adjustment discussed in section 

3.2. Specifically, our the abnormal returns 𝑟𝑟𝑖𝑖,𝑡𝑡+1 − 𝐸𝐸𝑡𝑡�𝑟𝑟𝑖𝑖,𝑡𝑡+1�, which are the basis of our PVGO 

shock measures adjust for time-varying risk premia 𝐸𝐸𝑡𝑡�𝑟𝑟𝑖𝑖,𝑡𝑡+1� using the option-price method 

outlined in section 3.2. However, a natural question is whether such a risk-premium adjustment is 

needed.  

[Table 4] 

The first column of table 4 report our baseline results. One advantage of our approach to 

constructing PVGO news and uncertainty shocks is that we use the same underlying data on 

abnormal returns. This allows us to include both uncertainty and news shocks simultaneously to 

ensure that the investment estimates of PVGO news shocks are not driven by PVGO uncertainty 

shocks and vice versa. Including both PVGO uncertainty and news shocks together therefore 

moves us closer to the theoretical comparative statics of section 2. As shown in the first column 

of table 4, including both PVGO shocks simultaneously leaves both response coefficients to PVGO 

news and PVGO uncertainty shocks highly significant. 
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Consistent with the model in section 2, investment increases in response to positive news shocks. 

From the perspective of the theory, better PVGO news lower the option exercise threshold and 

therefore stimulate investment. Furthermore, this is the case, although we directly control for 

Tobin’s Q and cash flow, both of which have been argued to capture news about future firm 

profitability. This suggests that we successfully capture the effect of news on PVGO as opposed 

to changes in the profitability of assets-in-place, as discussed in section 3.5. These empirical results 

are also qualitatively consistent with our model’s prediction on uncertainty shocks: increased 

uncertainty implies a “wait-and-see” effect by increasing the profit threshold for exercising a 

growth option. Correspondingly, capital expenditures systematically decline in response to 

positive uncertainty shocks.  

The investment response to systematic PVGO news is quantitatively sizeable: a one standard 

deviation increase in the news shocks stimulates investment by 0.71 percentage points (=

0.0392 × 0.18). This is a large effect, compared to an average investment capital ratio of 10.8 

percentage points reported in table 1. Similarly, a one standard deviation increase in uncertainty 

reduces investments by around 0.96 percentage points (= −0.042 × 0.229). Both responses are 

quantitatively significant but not unrealistically large, especially considering the fact that these are 

systematic PVGO news and uncertainty shocks.  

Additionally, column 2 of table 4 adds firm-specific PVGO news and uncertainty shocks. As 

mentioned in section 3.5, since systematic PVGO shocks are already included, the coefficient on 

the firm-specific PVGO shocks should be interpreted as the additional effect of idiosyncratic 

PVGO news and uncertainty shocks on corporate investment. As column 2 of table 4 shows, these 

estimates are again consistent with the view that our risk-premium adjustment is working as 

expected, since positive idiosyncratic PVGO news shocks are stimulating investment, while 

idiosyncratic PVGO uncertainty shocks are depressing investment. The third column of table 4 re-

estimates these effects on the subsample of firms with at least some R&D data, which will be the 

baseline sample for our main results. It confirms that our PVGO shocks show the same sign and a 

similar magnitude on those firms.  

The investment responses to news and uncertainty shocks are also of interest for another validity 

check. While the statistical tests of Granger causality are consistent with the view that our shock 

measures really represent changes in the information set of financial market participants, another 
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natural question is whether we really need to use abnormal returns to measure these expectation 

changes. In other words, how different would results be if one were willing to assume that the 

predictable part of realized returns is constant or zero, i.e. 𝐸𝐸𝜏𝜏[𝑟𝑟𝜏𝜏+1] = 0. While we believe that 

such a random walk assumption is a very good approximation of stock returns in the very short 

run, we are also cognizant of the fact that longer run stock returns are much more predictable, see 

Cochrane (2008). Whether normal returns are needed to adjust realized stock returns is therefore 

an empirical question, depending on the frequency of the data under consideration. 

Column 4 of table 4 report the results of using average market returns and the standard deviation 

of market returns as placebo measures of news and uncertainty shocks. As expected, these 

measures deliver significantly different results from our systematic PVGO news and uncertainty 

shock measures. Remember that the key difference here is our use of option-implied expected 

returns to calculate abnormal returns, from which we then calculate PVGO news or uncertainty 

shocks. In response to higher average, uncorrected market returns, investments decline on average. 

This is most likely driven by the fact that these market returns are dominated by risk compensation, 

instead of stock price movements in response to new information. As a result, one would expect 

that investment indeed declines in response to higher risk premia, due to increased costs of capital.  

Interestingly, increased realized market volatility, measured as the standard deviation of 

uncorrected market returns within a quarter, seems to stimulate investment, which is a seeming 

contradiction to any “wait-and-see” effect of investment. Column 5 of table 4 extends this analysis 

to firm-specific average stock returns and volatility of stock returns, which seem to exhibit similar 

problems as the uncorrected aggregate returns. Importantly, the investment response to 

uncorrected average firm-specific stock returns is negative, while there is not statistically 

significant investment response to firm-specific stock return volatility. 

 

5.2 Results for the R&D-based Real Options Model 

In this section, we provide our empirical results testing equations (12) and (13) in section 2. 

[Table 5] 
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Table 5 documents our main findings. Column 1 shows that firms significantly expand investment 

more aggressively in response to systematic PVGO news shocks if they also have high levels of 

R&D capital. This is exactly what our theory predicted in equation (12): firms with more R&D 

capital have more growth options, so that in reaction to PVGO news shocks, investment should 

expand more. The associated heterogeneous investment responses are quantitatively meaningful: 

a one standard deviation increase in R&D capital increases investment by 1.57 percentage points 

more for a systematic PVGO news shock of the same magnitude. This is a very large effect, 

compared to an average investment capital ratio of 10.8 percentage points documented on table 1. 

To put this effect into perspective, a one-standard deviation news shock stimulates investment by 

0.8 percentage points (= 0.0449 ⋅ 0.182) column 1 of table 5.  

The second column of table 5 tests the model prediction for the investment response interaction 

between uncertainty and R&D capital from equation (13). In the model, firms with higher R&D 

capital have a higher number of growth options, so that they will delay investment on more growth 

options, which in turn implies a higher reduction in investment. This prediction is confirmed in 

column 2 of table 5. Quantitatively, PVGO uncertainty shocks have a comparable investment 

response heterogeneity as news shocks. A one standard deviation increase in R&D capital implies 

a contraction of -1.83 percentage points.   

Because systematic PVGO news and uncertainty shocks tend to be correlated, the direct effect of 

systematic PVGO uncertainty shocks on investment weakens in the third column of table 6, when 

we include both systematic PVGO news and uncertainty shocks together. However, the term 

capturing the interaction of systematic PVGO uncertainty and exogenous R&D capital strengthens 

considerably in column 3 of table 5. This suggests that systematic PVGO shocks and R&D capital 

primarily work through the interaction of uncertainty and R&D capital, as predicted by equation 

(13). 

In columns 4 to 6 of table 5, we then add firm-specific PVGO shocks, so that the estimated 

coefficients on the shocks reflect the impact of idiosyncratic PVGO news and uncertainty shocks. 

As expected, the magnitude of the interaction effects for idiosyncratic PVGO news and uncertainty 

shocks is substantially higher than the magnitude on systematic PVGO shocks. As discussed at the 

end of section 2, this is to be expected if the share of idiosyncratic growth opportunities 𝑠𝑠𝑥𝑥 is much 

higher than the share of systematic growth opportunities 𝑠𝑠𝑦𝑦. Additionally, columns 4 to 6 are 
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reassuring, since the estimates on the interaction of exogenous R&D capital and systematic PVGO 

shocks stay significant and are similar in magnitude to results before including firm-specific 

PVGO news and uncertainty shocks.  

6. Robustness and Extensions 

This section offers several robustness checks, for our empirical results related to the predictions of 

the R&D-based real options model. The following sections can be divided into three parts. First, 

we check the robustness of our baseline predictions of the impact of systematic PVGO news and 

uncertainty shocks on investment, by controlling for contemporaneous macroeconomic shocks. 

We then move on to check the robustness of the R&D-based real options model in equations (12) 

and (13), and at the same time offer additional evidence on alternative theories of corporate 

investment responses to PVGO shocks.  

6.1 Controlling for contemporaneous macroeconomic shocks when using 

systematic PVGO shocks 

A potential issue is the possibility that our systematic PVGO news and uncertainty shocks not only 

measure new information about future cash flows and discount rates, but instead are correlated 

with contemporaneous macroeconomic shocks. This is an issue that is specific to our systematic 

PVGO shocks, but is worthwhile considering, since the option-price information that is key for the 

construction of the systematic PVGO shocks is also used to construct the firm-specific PVGO 

shocks.  

We therefore include quarterly unemployment and GDP growth as control variables for other 

macroeconomic shocks into our investment specification from section 5.1.2. Since macro shocks 

such as the onset of a recession can have persistent effects, we also include consensus GDP 

forecasts. However, we should note in this context, that ideally such persistent effects should also 

be reflected in changes of systematic PVGO. In other words, if we would include all possible 

variables forecasting future GDP growth, we would expect to eventually render our systematic 

PVGO shock measures insignificant as forecast measures will become multicollinear.  

[Table 6] 
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Table 6 reports the results of including controls for contemporaneous macro shocks as well as 

contemporaneous profit changes in an investment model as in section 5.1.2. Contemporaneous 

profit is added, as abnormal returns might include contemporaneous surprise dividend changes as 

shown in the context of the Campbell-Shiller decomposition in equation (14). As can be seen in 

comparison to table 4, the investment response coefficients to systematic PVGO news and 

uncertainty shocks are slightly strengthened by including these controls. On the other hand, it is 

informative to see that among the macro variables included in the firm-level regressions, responses 

to our systematic PVGO news and uncertainty shocks are typically an order of magnitude bigger 

than for other macro variables. A one-sided hypothesis test shows that responses to the systematic 

PVGO news and uncertainty shocks are statistically significantly larger than responses to the 

macro variables, with p-values ranging from 0.0210 to effectively 0.   

6.2 Investment Irreversibility and Asset Redeployability 

The first alternative explanation for our interaction results in section 5.2 is related to irreversible 

investments in the spirit of Kim and Kung, 2016. From this perspective, firms with assets that are 

not easily redeployable across business areas will face frictions to disinvestment. Since R&D 

intensive firms might have high levels of not redeployable assets, much of our results could be 

driven by irreversible investments rather than the number of growth options created by R&D. For 

example, it is well known that higher uncertainty will lead to an expansion of inaction regions for 

capital expenditure under investment irreversibility, see Dixit and Pindyck, 1994; Abel and Eberly, 

1994; Bloom, 2009. This prediction might explain why we find reduced investment for firms with 

high R&D capital. Additionally, one might expect that higher investment irreversibility leads to a 

more cautionary investment behavior in response to PVGO news shocks: since firms know that 

they cannot easily divest non-redeployable assets, they will invest less aggressively in response to 

growth opportunities.  

To investigate this possibility, we use firm-specific measures of irreversible investments, for which 

we use the inverse of asset redeployability measures of Kim and Kung, 2016. These measures in 

turn are based on estimates of re-salability of assets across industries. We use these irreversibility 

measures by interacting them with systematic and idiosyncratic PVGO news and uncertainty 

shocks and including these interactions alongside our interactions of PVGO shocks with 

exogenous R&D capital. Remember that our measures of R&D capital are exogenous in the sense 
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that they are accumulated from R&D expenditure values that are driven by state investment tax 

credit. To the degree that this instrumental variables strategy is successful, we would expect that 

including investment irreversibility does not change our baseline interaction results. 

[Table 7] 

Table 7 reports our results. We note that in this and the following tables, we report the coefficient 

estimates on the interaction terms of various alternative theories and our PVGO shock measures, 

but we suppress the standard errors to conserve space. Instead, significance levels are denoted by 

stars *. Columns 1 and 2 of table 7 documents the results of including investment irreversibility 

interactions with systematic and firm-specific PVGO shocks. As expected, our estimates remain 

highly significant. At the same time, this column shows some interesting results for investment 

irreversibility. In particular, the prediction that less redeployable assets lead firms to invest less 

aggressively in response to positive PVGO news shocks is bourne out in the data, but only for 

systematic PVGO news shocks. On the other hand, investment irreversibility seems to only reduce 

investment in response to idiosyncratic PVGO uncertainty shocks, but not for systematic PVGO 

uncertainty shocks – and then only at the 10% level. However, we should also note that we are 

focusing on the sample of firms with positive R&D data during our sample, so that the expected 

negative investment effect of PVGO uncertainty for firms with high investment irreversibility 

could still apply more broadly.  

 

6.3 Asset Tangibility 

A prominent literature in finance has shown that financial frictions are an important determinant 

of investment behavior. In this context, Almeida and Campello 2007 have used asset tangibility to 

quantify financial frictions. This is based on limited enforcement models of financial frictions like 

Hart and Moore, 1994, in which the ability to collateralize a higher fraction of assets, results in 

lower degrees of external financing frictions. At the same time, high R&D firms by definition 

generate a higher fraction of intangible assets, which implies higher financial frictions. Therefore, 

more financially constrained firms in turn might fail to expand in response to positive PVGO news 

shocks, due to their inability to finance large capital expenditures. Additionally, more financially 

constrained firms might reduce investments more in response to PVGO uncertainty shocks. This 
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is especially the case if financing constraints are only occasionally binding, since firms can then 

avoid running into financial constraints in the future by delaying investment expenditures today, 

see Alfaro, Bloom and Lin, 2019 and Melcangi, 2019. In other words, firms will attempt to 

preserve their ability to rapidly expand in the future, once the uncertainty is lifted by increasing 

their “precautionary savings” today. This might be an alternative explanation why high R&D firms 

tend to systematically invest less in response to PVGO uncertainty shocks. To investigate the 

robustness of our results to these predictions, we follow Almeida and Campello 2007 and construct 

firm-level measures of asset tangibility and include their interaction with systematic and firm-

specific PVGO news and uncertainty shocks to control for the effect of financial frictions on 

investment response heterogeneity to PVGO shocks.  

[Table 8] 

Columns 3 and 4 of table 7 document the results. As before it shows that our baseline results for 

the R&D-based real options model remain significant. However, the asset tangibility results are of 

interest in their own right. Remember that higher values of tangibility correspond to less financially 

constrained firms. The results in table 7 suggest that less financially constrained firms respond less 

to systematic and idiosyncratic PVGO news shocks and not more, as predicted by a basic limited 

enforcement financial frictions model. On the other hand, the fact that less financially constrained 

firms seem to cut their investments less in response to positive PVGO uncertainty shocks is fully 

consistent with such a theory, albeit a model with occasionally binding constraints instead of 

always binding constraints. 

6.4 Firm Age and Lifecycle Growth Opportunities 

Another plausible alternative explanation for our findings is that growth opportunities might vary 

by firm age. From this perspective, young firms are more dynamic and have more growth 

opportunities than old firms, see Adelino, Song and D. Robinson, 2017; Kueng, Yang and Hong, 

2017. As a result, equation (13) would predict that younger firms cut back capital expenditures 

more than old firms, which could potentially explain our results if young firms also tend to be 

more R&D intensive. We therefore create a proxy for firm age from Compustat data on firms’ IPO 

dates. Though admittedly only a very crude proxy for real firm age, it seems plausible that the 

argument on differences in growth opportunities should also apply to age as a public firm. We then 
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include the interaction of PVGO shocks and firm age as control variables in our heterogeneous 

investment response regressions. 

[Table 7] 

The third column in table 7 reports the results. As before, the interaction coefficients of exogenous 

R&D capital and PVGO shocks are reasonably robust and do not change much after we include 

age interactions. Furthermore, the interaction effect of firm age and PVGO uncertainty seems 

consistent with the idea that younger firms cut investment back more than older firms, consistent 

with the view that younger firms have more growth opportunities. However, R&D capital is not 

correlated enough with firm age for this effect to explain our baseline interactions. 

 

6.5 Risk Shifting or Asset Substitution 

Our last set of potential alternative explanations for the heterogeneous investment responses to 

PVGO shocks are related to capital structure and bankruptcy risk. Ever since Black and Scholes, 

1973 and Merton 1974, it has been well understood that firm value under limited liability can be 

analyzed as a call option with the value of debt liabilities as strike. Additionally, the value of this 

call option is potentially subject to moral hazard by self-interested managers, who can increase the 

riskiness of firm investments, which boosts firm value at the expense of debt holders, see Jensen, 

and Meckling, 1976; Leland, 2002. This “risk shifting” or “asset substitution” channel would 

potentially explain our results, if low R&D firms are more likely to increase risky investment and 

therefore exhibit higher investment than high R&D firms in times of high PVGO uncertainty. 

Empirically, this could be the case if high R&D firms exhibit either low levels of leverage or are 

further away from bankruptcy than low R&D firms or if firms close-to-bankruptcy tend to cut their 

R&D budgets a lot. In this case, high leverage or close to bankrupt firms would increase the 

riskiness of investment projects to “gamble for resurrection”, which therefore boosts investment. 

To proxy for this risk shifting channel, we use three separate measures. The first is firm leverage 

and is directly related to the idea that more leverage implies that firms may be closer to default, as 

in Leland, 2002.  

The second is the Altman Z-score, a proxy variable used by the academic literature and 

practitioners alike to predict firm default, see Russ, Peffley and Greenfield, 2004 and Altman, 
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2018. As mentioned above, we would expect firms with high Altman Z-scores to increase 

investment more in response to PVGO uncertainty shock than firms with low Altman Z-scores, 

consistent with Leland, 2002. 

The third measure is firm size, as measured by total market capitalization. This firm size measure 

is often used in the asset pricing literature, e.g. in Fama and French, 1992 and has been argued to 

reflect “financial distress risk”, see Vassalou and Xing, 2004. More importantly, future 

continuation value or “franchise value” is theoretically a key variable that managers consider when 

deciding whether to increase asset substitution, see Leland, 2002. Only when franchise values are 

low will managers increase asset substitution, so that one might expect that higher investments in 

response to higher PVGO uncertainty especially for small cap firms. In other words, the interaction 

effect of market cap and PVGO uncertainty should be negative.   

[Table 8] 

As shown in of table 8, risk shifting or asset substitution is unlikely to be an explanation for the 

R&D interaction results we see in the data. The response of capital expenditures to systematic and 

idiosyncratic PVGO uncertainty shocks stays negative and significant for high R&D firms, across 

almost all specifications in table 8, except for column 4. Even then, the interaction between 

exogenous R&D capital and idiosyncratic PVGO uncertainty still remains highly significant, even 

though the interaction effect between exogenous R&D capital and systematic PVGO uncertainty 

becomes insignificant. 

The results are more mixed when considering the risk-shifting hypothesis. On the one hand, the 

leverage results are potentially consistent with risk-shifting: in response to systematic PVGO 

uncertainty shocks, more leveraged firms invest more aggressively. On the other hand, when we 

use the Altman Z-score to measure closeness to bankruptcy, we find that firms closer to bankruptcy 

tend to invest less aggressively in response to systematic PVGO uncertainty shocks. Furthermore, 

predictions of the risk shifting channel for market cap would have been that smaller firms invest 

more aggressively in response to PVGO uncertainty shocks, which is not a pattern we find in the 

data. 

7. Conclusion 
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In this paper, we have derived predictions from the R&D-based real options model of investment 

and provided estimates for the causal interaction of R&D capital and PVGO shocks on corporate 

investment. Our empirical contribution was made possible by new measures of PVGO news and 

uncertainty shocks that are derived from abnormal returns. Our results are fully consistent with the 

predictions of the R&D-based real options model of corporate investments, that explains why 

capital expenditure and R&D capital are complementary. Furthermore, we show that alternative 

approaches to explain investment responses to PVGO uncertainty shocks, such as investment 

irreversibility, financial frictions and risk shifting are not driving our results.  
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(1) (2) (3) (4) (5)
VARIABLES Mean SD 25th Perc Median 75th Perc

Systematic PVGO News Shock 0.0105 0.182 -0.00828 0.0182 0.0700
Systematic PVGO Uncertainty 
Shock 0.141 0.229 0.0343 0.0615 0.116
Uncorrected Return 0.0461 0.349 -0.0358 0.1886 0.3708
Idiosyncratic PVGO News 
Shock -0.0020414 0.0265608 -0.0170319 -0.00576 0.0081237
Idiosyncratic PVGO 
Uncertainty Shock 0.0321934 0.0192707 0.0166981 0.027754 0.0444155

log R&D capital -0.896 0.36 -1.002 -0.756 -0.693
log R&D expenditures -0.0024457 0.072378 -0.02168 0 0.02133
I/K 0.108 0.115 0.0268 0.0696 0.153
log CFK -1.961 1.793 -3.107 -1.949 -0.804
log Tobin's Q 1.180 1.693 -0.0171 1.081 2.304
Change aggregate profit 3735.481 156380.3 -96403.25 0 131452.1
Unemployment 6.37 1.681 5.161 5.921 7.444
GDP Forecast 9975.102 4440.334 5895.331 10205.4 14060.34
GDP Growth 0.0522 0.0355 0.037 0.05 0.069

Table 1: Summary statistics of main variables

Notes: Summary statistics for all main variables in our analysis. PVGO shocks are averages and volatility of stock 
return surprises of the S&P 500 index. Uncorrected return is return on S&P 500 index. R&D capital is calculated 
by accumulating exogenously identified R&D expenditures using perpetual inventory method. 



L = lags F-Stat P-Value F-Stat P-Value
1 577.7 2.20E-16 0.0833 0.7663
2 229.59 2.20E-16 0.0467 0.9544
3 123.23 2.20E-16 0.1188 0.9491
5 51.632 2.20E-16 0.0924 0.9934
10 13.338 2.20E-16 0.122 0.9996

L = lags F-Stat P-Value F-Stat P-Value
1 1802.1 2.20E-16 0.7648 0.3818
2 719.57 2.20E-16 0.6962 0.4985
3 386.94 2.20E-16 0.465 0.7067
5 163.12 2.20E-16 0.6269 0.6793
10 41.46 2.20E-16 0.5629 0.8454

Table 2: Granger causality tests of PVGO shocks and 
i t t

Notes: Tables provide results of Granger causality test between investment 
and PVGO shocks with different lag lengths. PVGO News shocks are 
quarterly averages of weekly abnormal S&P 500 returns, while PVGO 
Uncertainty shocks are quarterly standard deviations of weekly abnormal 
S&P 500 returns. 

(1) H0: Systematic 
PVGO News do not G-
cause investment

(2) H0: Investment does not 
G-cause Systematic PVGO 
News

(3) H0: Systematic 
PGVO Uncertainty 
does not G-cause 
investment

(4) H0: Investment does not 
G-cause Systematic PVGO 
Uncertainty



(1) (2) (3) (4) (5) (6)

∆Profit t+5 ∆Profit t+5 ∆Profit t+5 ∆Profit t-1 ∆Profit t-1 ∆Profit t-1

Systematic PVGO News 
Shock 15.75*** 14.29*** 3.555 6.877

(2.593) (4.434) (13.70) (14.54)

Systematic PVGO 
Uncertainty Shock -7.689*** -6.561** -2.980 4.103

(1.441) (2.910) (9.864) (8.841)

Idiosyncratic PVGO News 
Shock 161.6*** 193.2*** -164.7*** -162.6***

(33.83) (32.55) (39.70) (40.04)

Idiosyncratic PVGO 
Uncertainty Shock 48.34 -92.60 -105.3*** -33.61

(67.62) (71.57) (36.89) (50.42)

I/K 17.14 21.62* 15.72 -67.42*** -70.96*** -66.74***
(12.04) (11.75) (11.93) (14.49) (14.84) (14.52)

Tobin's Q -3.848*** -4.516*** -3.971*** 8.331*** 8.784*** 8.354***
(1.133) (1.144) (1.140) (2.049) (2.039) (2.032)

log CFK -0.809 -0.699 -0.948* 1.247 1.066 1.298
(0.521) (0.501) (0.521) (1.019) (1.068) (1.090)

Firm FE YES YES YES YES YES YES

N 25699 25699 25699 29,000 29,000 29,000

Future Profit Growth Past Profit Growth

Notes: Prediction of future and past profit growth using PVGO News and Uncertainty Shocks. Data frequency is quarterly. 
Standard errors are clustered at the firm-level.

Table 3: Cash-flow implications of PVGO shocks.



(1) (2) (3) (4) (5) (6)

Systematic PVGO News Shock 0.0177*** 0.0222*** 0.0355***
(0.00171) (0.00382) (0.00568)

Systematic PVGO Uncertainty Shock -0.0335*** -0.0368*** -0.0253***
(0.00148) (0.00328) (0.00478)

Idiosyncratic PVGO News Shock 0.177*** 0.192***
(0.0133) (0.0225)

Idiosyncratic PVGO Uncertainty Shock -0.136*** -0.204***
(0.0274) (0.0510)

Average Uncorrected Realized S&P-500 Return -0.1053*** -0.0325*** -0.105***
(0.00690) (0.00827) (0.0142)

Volatility of Uncorrected Realized S&P-500 Return 0.1462* 0.0500*** 0.0645***
(0.00993) (0.0115) (0.0198)

Average Firm-specific Realized Stock Returns -0.00542*** -0.0162***
(0.00155) (0.00350)

Volatility of Firm-specific Realized Stock Returns 0.00238 0.00284
(0.00147) (0.00367)

Lagged I/K 0.178*** 0.183*** 0.172*** 0.1718*** 0.161*** 0.167***
(0.00295) (0.00692) (0.0130) (0.00267) (0.00351) (0.00614)

Tobin's Q 0.0104*** 0.0108*** 0.00681*** 0.0168*** 0.00499*** 0.00371***
(0.000410) (0.00130) (0.00227) (0.00039) (0.000473) (0.000763)

log CFK 0.0505*** 0.0497*** 0.0504*** 0.0517*** 0.0566*** 0.0543***
(0.000250) (0.000867) (0.00194) (0.00022) (0.000294) (0.000469)

Firm FE YES YES YES YES YES YES

N 118,625 118,625 26,377 118,625 118,625 26,377
Notes: PVGO News shocks are quarterly averages of weekly abnormal S&P 500 returns, while PVGO Uncertainty shocks are quarterly standard deviations of weekly abnormal S&P 
500 returns. The Average Uncorrected S&P-500 Return is the quarterly average of weekly S&P 500 returns, while the Volatility of the Uncorrected S&P-500 Returns is the quarterly 
standard deviation of weekly S&P 500 returns. Similarly, the Average Firm-specific Realized Stock Returns is the quarterly average of firm-specific stock returns and Volatility of 
Firm-specific Realized Stock Returns is the standard deviation of weekly firm-specific stock returns within a quarter. Columns 1,2,4,5 use all publicly traded firms in Compustat, while 
columns 3 and 6 focus on the sample of firms with at least some R&D data. Data is quarterly and standard errors are clustered at the firm-level. All columns use Arellano-Bond 
estimators, due to presence of firm fixed effects and lagged depedent variables.

PVGO Shocks Uncorrected Returns
Dependent Variable: Investment / Capital (I/K)

Table 4: Comparison of PVGO shocks with moments from uncorrected realized stock returns



(1) (2) (3) (4) (5) (6)

Systematic PVGO News                           
X R&D Capital 0.0157*** 0.00460 0.0151*** 0.0167***

(0.00443) (0.00370) (0.00441) (0.00463)

Systematic PVGO 
Uncertainty Shocks               
X R&D Capital

-0.0183*** -0.0435*** -0.0187*** -0.0119***

(0.00454) (0.0115) (0.00455) (0.00452)

Systematic PVGO News 
Shocks 0.0449*** -0.0166*** 0.0450*** 0.0310***

(0.00454) (0.00453) (0.00457) (0.00572)

Systematic PVGO 
Uncertainty Shocks -0.0404*** -0.0289*** -0.0405*** -0.0310***

(0.00423) (0.00505) (0.00422) (0.00512)

R&D Capital 0.0265** 0.0345** 0.0318** 0.0258** 0.0444*** 0.0419***
(0.0117) (0.0139) (0.0132) (0.0115) (0.0113) (0.0100)

Idiosyncratic PVGO News     
X R&D Capital 0.0462*** 0.0878***

(0.0176) (0.0207)

Idiosyncratic PVGO 
Uncertainty Shocks               
X R&D Capital

-0.221*** -0.266***

(0.0571) (0.0591)

Idiosyncratic PVGO News 
Shocks 0.120*** 0.193***

(0.0196) (0.0228)

Idiosyncratic PVGO 
Uncertainty Shocks -0.0433 -0.210***

(0.0440) (0.0511)

Firm FE YES YES YES YES YES YES

N 26,377 26,377 26,377 26,377 26,377 26,377

Investment / Capital (I/K)

Table 5: R&D-based Real Options Model - Responses to PVGO shocks

Additional controls: lagged I/K, Tobin's Q, log CFK and all uninteracted baseline terms. See table notes

Notes: Systematic (idiosyncratic) PVGO News shocks are quarterly averages of weekly abnormal returns for the S&P 500 
(weekly firm specific abnormal returns). Systematic (idiosyncratic) PVGO Uncertainty shocks are quarterly standard 
deviations of weekly abnormal S&P 500 returns (weekly firm specific abnormal returns).  R&D capital is calculated by 
accumulating state-level investment-tax credit driven R&D expenditures using perpetual inventory method. Data frequency is 
quarterly and standard errors are clustered at the firm-level. All columns use Arellano-Bond estimators, due to presence of 
firm fixed effects and lagged depedent variables.



(1) (2) (3)

Dependent Variable: Investment / Capital (I/K)
Systematic PVGO News Shock 0.0425*** 0.0164***

(0.00291) (0.00334)

Systematic PVGO Uncertainty Shock -0.0490*** -0.0414***
(0.00264) (0.00307)

GDP growth -0.0451*** -0.0729*** -0.0780***
(0.0154) (0.0155) (0.0156)

Unemployment -0.00174*** -0.00185*** -0.00165***
(0.000171) (0.000167) (0.000170)

Consensus forecast GDP growth 6.84e-07 -5.89e-07 -3.53e-07
(4.60e-07) (4.58e-07) (4.59e-07)

Change aggregate profit 2.79e-08*** 2.94e-08*** 3.04e-08***
(1.68e-09) (1.72e-09) (1.71e-09)

Lagged I/K 0.199*** 0.200*** 0.199***
(0.00703) (0.00701) (0.00701)

Tobin's Q 0.0105*** 0.0109*** 0.0111***
(0.00134) (0.00132) (0.00132)

log CFK 0.0499*** 0.0486*** 0.0485***
(0.000898) (0.000896) (0.000894)

Firm FE YES YES YES

N 118,625 118,625 118,625

PVGO Shocks

Notes: PVGO News shocks are quarterly averages of weekly abnormal S&P 500 returns, 
while PVGO Uncertainty shocks are quarterly standard deviations of weekly abnormal 
S&P 500 returns. The Average Uncorrected return is the quarterly average of weekly S&P 
500 returns, while the Volatility of the Uncorrected Return is the quarterly standard 
deviation of weekly S&P 500 returns. Data is quarterly and standard errors are clustered at 
the firm-level. All columns use Arellano-Bond estimators, due to presence of firm fixed 
effects and lagged depedent variables.

Table 6: Systematic PVGO News and Uncertainty shocks with macroeconomic controls



(1) (2) (3) (4) (5) (6)

Systematic PVGO News                           
X R&D Capital 0.00281 0.0139** 0.0047 0.0144*** 0.00230 0.0110***

(0.00591) (0.00623) (0.004) (0.00461) (0.00341) (0.00392)
Systematic PVGO Uncertainty 
Shocks X R&D Capital -0.0172*** -0.0130*** -0.0138*** -0.00885* -0.0167*** -0.0139***

(0.00467) (0.00471) (0.0048) (0.00476) (0.00459) (0.00459)

Idiosyncratic PVGO News                     
X R&D Capital 0.0835*** 0.0656*** 0.0823***

(0.0238) (0.0196) (0.0192)
Idiosyncratic PVGO Uncertainty 
Shocks X R&D Capital -0.246*** -0.222*** -0.182***

(0.0397) (0.0505) (0.0398)
Systematic PVGO News                           
X Irreversibility -0.00822*** -0.00462*

Systematic PVGO Uncertainty 
Shocks X Irreversibility -0.000221 -6.04e-06

Idiosyncratic PVGO News                           
X Irreversibility 0.0158

Idiosyncratic PVGO Uncertainty 
Shocks X Irreversibility -0.0277*

Systematic PVGO News                           
X Asset Tangibility -0.104* -0.162***

Systematic PVGO Uncertainty 
Shocks X Asset Tangibility 0.293*** 0.330***

Idiosyncratic PVGO News                           
X Asset Tangibility -1.225***

Idiosyncratic PVGO Uncertainty 
Shocks X Asset Tangibility 0.887*

Systematic PVGO News                           
X Firm age -0.000223 -0.000383

Systematic PVGO Uncertainty 
Shocks X Firm age 0.000294** -4.01e-05

Idiosyncratic PVGO News                           
X Firm age 0.000480

Idiosyncratic PVGO Uncertainty 
Shocks X Firm age 0.00603***

Firm FE YES YES YES YES YES YES

N 26,377 26,377 26,377 26,377 26,377 26,377

Investment / Capital (I/K)

Table 7: Robustness of R&D-based Real Options Model - Irreversibility, Asset Tangibility and Firm age

Additional controls: lagged I/K, Tobin's Q, log CFK and all uninteracted baseline terms. See table notes

Notes: Systematic (idiosyncratic) PVGO News shocks are quarterly averages of weekly abnormal returns for the S&P 500 (weekly firm specific 
abnormal returns). Systematic (idiosyncratic) PVGO Uncertainty shocks are quarterly standard deviations of weekly abnormal S&P 500 returns 
(weekly firm specific abnormal returns).  R&D capital is calculated by accumulating state-level investment-tax credit driven R&D expenditures 
using perpetual inventory method. Data frequency is quarterly and standard errors are clustered at the firm-level. Irreversibility measures 
redeployability of assets, constructed by Kim and Kung, 2016. Asset tangibility measures fraction of assets that can be easily collateralized, as 
constructed by Almeida and Campello, 2007. Firm age is measured by years since IPO. Additional controls include all un-interacted baseline 
effects for any interaction terms as well as the additional controls of lagged (I/K), Tobin's Q and cash flow as percent of assets. Standard errors 
are clustered by firm. Significance levels are denoted by *: 10%, **: 5%, ***: 1%. Standard errors for interactions of shocks and various control 
variables are supressed to conserve space, with full results available in the online appendix. All columns use Arellano-Bond estimators, due to 
presence of firm fixed effects and lagged depedent variables.



(1) (2) (3) (4) (5) (6)

Systematic PVGO News                           
X R&D Capital 0.00401 0.0139** 0.00403 0.0128*** 0.00281 0.0110***

(0.00371) (0.00623) (0.00357) (0.00449) (0.00361) (0.00392)

Systematic PVGO Uncertainty 
Shocks X R&D Capital -0.0116** -0.0130*** -0.0158*** -0.00692 -0.0175*** -0.0139***

(0.00460) (0.00471) (0.00478) (0.00478) (0.00474) (0.00459)

Idiosyncratic PVGO News                
X R&D Capital 0.0835*** 0.0705*** 0.0823***

(0.0238) (0.0209) (0.0192)
Idiosyncratic PVGO Uncertainty 
Shocks X R&D Capital -0.246*** -0.211*** -0.182***

(0.0397) (0.0542) (0.0398)
Systematic PVGO News                           
X Leverage -0.00243 -0.00237

Systematic PVGO Uncertainty 
Shocks X Leverage 0.0152*** 0.0156***

Idiosyncratic PVGO News                           
X Leverage -0.0318***

Idiosyncratic PVGO Uncertainty 
Shocks X Leverage -0.0143

Systematic PVGO News                           
X Altman Z-Score 0.00403*** 0.00298*

Systematic PVGO Uncertainty 
Shocks X Altman Z-Score -0.0043*** -0.00410***

Idiosyncratic PVGO News                           
X Altman Z-Score -0.00436

Idiosyncratic PVGO Uncertainty 
Shocks X Altman Z-Score -0.0193*

Systematic PVGO News                           
X Market Cap 0.00381** 0.00507**

Systematic PVGO Uncertainty 
Shocks X Market Cap 0.00245 0.00184

Idiosyncratic PVGO News                           
X Market Cap 0.0189**

Idiosyncratic PVGO Uncertainty 
Shocks X Market Cap -0.0192

Firm FE YES YES YES YES YES YES

N 26,377 26,377 26,377 26,377 26,377 26,377

Table 8: Robustness of R&D-based Real Options Model - Asset Substitution / Risk Shifting

Investment / Capital (I/K)

Additional controls: lagged I/K, Tobin's Q, log CFK and all uninteracted baseline terms. See table notes

Notes: Systematic (idiosyncratic) PVGO News shocks are quarterly averages of weekly abnormal returns for the S&P 500 (weekly firm specific 
abnormal returns). Systematic (idiosyncratic) PVGO Uncertainty shocks are quarterly standard deviations of weekly abnormal S&P 500 returns 
(weekly firm specific abnormal returns).  R&D capital is calculated by accumulating state-level investment-tax credit driven R&D expenditures 
using perpetual inventory method. Leverage measures ratio of debt to equity. Total assets measures balance sheet value of assets. Market cap 
measures total stock market value of outstanding equity. Data frequency is quarterly and standard errors are clustered at the firm-level. Controls 
include all un-interacted baseline effects for any interaction terms as well as the additional controls of lagged (I/K), Tobin's Q and cash flow as 
percent of assets. Standard errors are clustered by firm. All columns use Arellano-Bond estimators, due to presence of firm fixed effects and 
lagged depedent variables.
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