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Abstract 

Technological uniqueness, defined as the degree to which a firm’s patented technology portfolio 

differs from its industry competitors, can have an unclear relationship with firm performance. On 

the one hand, recent empirical work in economics suggests that technological uniqueness can act 

as a barrier to incoming technology spillovers and impede firm performance. Alternatively, 

technological uniqueness could be a strategic resource which reduces outgoing technology 

spillovers and is costly to imitate. We empirically examine these competing arguments and find 

evidence that the strategic resource argument dominates in the data with technologically unique 

firms outperforming. At the same time, we show that pursuing technological uniqueness is costly, 

as unique firms indeed benefit less from technology spillovers, are harder to understand by equity 

analysts and have higher costs of equity capital. 

 
1 We would like to thank participants at University of Oklahoma Price College of Business seminar and the Wharton 
Corporate Strategy and Innovation Conference 2023, including our discussant, Gautam Ahuja. For valuable 
comments, we also thank Nick Argyres, Nur Ahmed, Kose John, Aseem Kaul, Bill Megginson, Paul Neary, Miles 
Shaver, Neil Thompson, Brian Wu, Pradeep Yadav and three anonymous referees as well as an anonymous associate 
editor. 
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1. Introduction 
A foundational premise of the resource-based view is that the possession of unique, 

valuable, and difficult to imitate resources is a necessary condition for superior performance 

(Barney, 1991). Such uniqueness in resources possessed is often simply an artifact of securing 

them at prices below their future value in use—below the prices other competitors must pay for 

similar resources (Barney, 1986). These unique and valuable resources—access to low-cost labor, 

a unique production or product technology, a brand, or some other resource—allow firms to 

generate unique products and services that deliver superior performance. Of course, causality may 

also operate in the opposite direction—a capacity to envision unique products or a unique strategy 

may enable firms to identify and secure resources that are underpriced relative to their value in use 

(Barney, 1986; Felin, Kauffman and Zenger, 2023). 

Frequently cited as foremost among advantage-providing resources are unique or firm-

specific technology and knowledge (Grant, 1996; Kogut and Zander, 1992). But knowledge is a 

resource quite unlike physical resources that are easily bought and sold in factor markets. 

Technological resources can be self-produced, widely shared, and often easily absorbed by others 

(Cohen and Levinthal, 1990). Knowledge is a scale free resource (Arrow, 1962; Levinthal and Wu, 

2010) which eases its deployment within the firm, but also enables its absorption by and from 

others. The choice to pursue uniqueness in technology or knowledge generation presents the firm 

and strategist with a paradox. While a firm’s decision to elevate its technological uniqueness may 

enable valuable product uniqueness readily deployable within the firm, it may also dampen a firm’s 

capacity to absorb valuable knowledge from peers (Cohen and Levinthal, 1990) through beneficial 

spillovers (Bloom, Schankerman, and Van Reenen, 2013). Moreover, while technology’s value 

depends on its novelty, having novel technology’s value recognized by capital markets requires 

communication of this value. Yet, communicating technology’s novel value to investors is often 

particularly difficult and may demand sharing the knowledge itself, which further undermines its 

value (Arrow, 1962). Because of both effects, the decision of whether to pursue uniqueness in 

technology as a path to increased firm performance is less straightforward than the resource-based 

view might imply. At a minimum, the choice to pursue technological uniqueness as a basis for 

generating product uniqueness comes at a cost.  
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In this paper we empirically explore both the substance of the tradeoff faced in pursuing 

unique technology, and the net result on firm performance. We construct a novel measure of 

technological uniqueness based on the patent classes in which a firm chooses to participate to 

protect its intellectual property, relative to a group (centroid) vector of patent classes selected by 

industry peers. We then examine how the uniqueness of a firm’s patenting vector influences the 

scope of knowledge spillovers it enjoys, the cost of capital it pays, and the financial performance 

it generates. The main empirical finding is that more technologically unique firms outperform less 

unique industry rivals. More precisely, a one standard deviation greater technological uniqueness 

score is associated with 2.1% higher sales growth, 6.8% higher Tobin’s Q, and roughly 0.8% 

higher profitability and ROA. These sales growth, profitability, and ROA effects are persistent at 

least four years into the future.  

A distinct contribution of our analysis is to establish credible causal estimates of the 

performance effects of technological uniqueness. If higher technological uniqueness causes better 

firm performance, there are at least some firms that will benefit from pursuing more 

technologically unique strategies. To establish such causality, we use three distinct natural 

experiments—changes in industry-level technology trends, variation in local R&D tax credits, and 

variation in patent expiration. Our results suggest not only that higher technological uniqueness 

causes better firm performance, but that lower uniqueness also causes underperformance. 

Furthermore, we empirically characterize the set of firms for which these causal estimates apply, 

using complier analysis as suggested by Angrist and Pischke (2009). This analysis provides 

empirical characterizations of firms for which the causal effects of technological uniqueness are 

especially strong, thereby providing strategically useful predictions, which apply to some 

competitors but not for others (Barney, 1986). 

At the same time, our results also suggest that the pursuit of technological uniqueness 

comes at a cost. We document that technologically unique firms benefit from fewer technological 

spillovers from their industry peers and pay higher costs of equity capital. We follow Litov et al. 

(2012) and explore the mechanism behind this latter finding of higher equity costs. We find that 

equity analysts consistently struggle to recognize technological uniqueness as a positive predictor 

of future firm performance. They are also are more likely to drop coverage of technologically 

unique firms, and expend more effort if they choose to cover these technologically unique firms. 
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Technologically unique firms appear harder for those outside the firm to understand as they must 

access private information, as argued by Benner and Zenger (2016). This asymmetric information 

problem, in addition to elevating equity costs, also explains why technological uniqueness is often 

hard to imitate and potentially risky to pursue. 

In Section 2, we further develop our theory and hypotheses. In Section 3, we describe our 

new measure of technological uniqueness and the underlying data for our study. Section 4 

discusses econometric issues and how we address them. Section 5 presents our main results. 

Section 6 offers robustness checks and section 7 discusses implications.  

2. Theory: The Technological Uniqueness Paradox 

2.1 Corporate Strategy and Technological Resources 

Our conceptual starting point is a paradox at the heart of corporate strategy: On the one 

hand, unique strategic choices are needed for firms to differentiate themselves from competitors. 

On the other hand, such uniqueness raises the costs of evaluating strategies in capital markets. This 

“Uniqueness Paradox” was first established by Litov et al. (2012) and was further developed by 

Benner and Zenger (2016) and Oemichen et al. (2021). However, neither Litov et al. (2012) nor 

any of the studies following it, specified the nature of resources at the heart of the Uniqueness 

Paradox, partly because the empirical measure used by Litov et al. (2012) was based on uniqueness 

of industry segments. At the same time, which resource is pursued matters for our understanding 

of corporate strategy, since a strategy based on technology and patents can be very different in 

nature from a strategy based on a physical resource, talent, or an effective management team 

(Levinthal and Wu, 2010). We, therefore, push beyond the previous literature on the Uniqueness 

Paradox by focusing on the technology space – a domain in which an entirely novel set of 

considerations emerges.  

Technology is often highlighted as a particularly important source of unique and valuable 

resources (Wernerfelt, 1984). However, technology and other forms of knowledge are resources 

quite unlike physical resources that are easily bought and sold. Knowledge, including knowledge 

found within patentable technologies, is “non-rival” (Romer, 1990) or “scale-free” (Levinthal and 

Wu, 2010). While a rival good has the property that its use by one party “precludes its use by 
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another” (Romer, 1990),2 knowledge can be infinitely replicated and shared, at a small or no cost 

and without loss of its inherent value (though with obvious loss to its competitive value). For 

example, the use of an algorithm by one division does not diminish the ability of another division 

to use the same algorithm, an example of a “within-firm spillover”. Such within-firm spillovers 

are especially potent for large corporations, which, for example, can simultaneously deploy the 

same technology across many different geographic markets (Winter and Szulanski, 2001). For 

example, a company like Uber can concurrently re-use its proprietary technology across many 

local geographic markets3 and every improvement in its technology will spill-over into all its local 

markets. In contrast, for rival or “non-scale free” resources (Levinthal and Wu, 2010), use by one 

local division will reduce usage by another division. If Uber’s key resource were an effective 

management team instead of its technology, then adding more geographic markets would reduce 

the limited time and attention the management team can devote to each individual market 

(Levinthal and Wu, 2010). Non-rival technological resources also contrast with other rival 

resources, such as firm-specific equipment or human capital, which is typically redeployed as 

opportunities shift (Helfat and Eisenhardt, 2004; Lieberman, Lee and Folta, 2017; Dickler and 

Folta, 2020), but cannot be simultaneously deployed like a non-rival resource.  

 The scale-free nature of technology also enables the possibility of technological spillovers 

across firms, as the invention of a new technology by one firm allows other firms to also benefit. 

In this context, we are interested in technological uniqueness, defined as the degree to which a 

firm’s patented technology portfolio differs from its industry competitors. Our main conceptual 

insight is that across-firm spillovers implied by the scale-free nature of technological uniqueness 

will lead to a new “Technological Uniqueness Paradox”: On the one hand, technological 

uniqueness can be costly, because of reduced incoming spillovers. On the other hand, 

 
2 We follow Romer (1990) in distinguishing the concept of non-rivalry, which is a physical attribute of technology, 
from the concept of excludability, which is a function of physical attributes and the legal system. Romer writes that 
“A good is excludable if the owner can prevent others from using it.” Patented technologies are an example of a non-
rival, but partially excludable good, since patent owners can force others to pay a fee for the usage of the patented 
technology. 
3 At the same time, much of the traditional literature on corporate strategy and diversification has argued that even 
technical resources are subject to limited fungibility, so that technology becomes less valuable when used in 
applications and industries far from the purpose they were first developed for, see Levinthal and Wu (2010). Our 
empirical analysis takes such limits in fungibility into account. 
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technological uniqueness can be beneficial because of higher imitation barriers and reduced 

outgoing spillovers. 

 

2.2 Reduced Outgoing Across-Firm Spillovers as a Benefit of Technological Uniqueness  

Patents are commonly used as a proxy for advantage-generating technological resources 

based on the idea that patents are essentially “surrogates for inimitable and non-substitutable 

resources” and are as stipulated by US patent law “useful, novel and non-obvious” (Markman et 

al., 2004). Legal barriers make these resources somewhat costly to imitate, as mimicking inventors 

must “invent around” a patented technology. Consistent with this logic, substantial strategy and 

innovation literature has focused on measuring patent portfolios as valuable resources by simply 

summing the number of patents that a firm holds (Hsu and Ziedonis, 2013) or generating a value-

weighted sum of patents (Kogan et al., 2017; Markman et al., 2004). But the uniqueness of a firm’s 

technological position is more than the sum of individual patents, as patents may be 

technologically dissimilar or differentially important (e.g., exploratory patents versus exploitative 

patents (Sarnecka and Pisano, 2021)). Moreover, firms are fundamentally bundles of resources 

(Penrose, 1959; Rubin, 1973) that represent in part sequences of investment choices about what 

technologies to pursue (and, of course, their historical success in those pursuits). Independent of 

the inherent uniqueness of individual patents, the pattern by which technology trajectories are 

pursued (which we measure by participation in patent classes) will vary in uniqueness. Our 

measure of technological uniqueness is therefore precisely this: the uniqueness of a firm’s patent 

portfolio, as measured by participation in patent classes, relative to the patent class portfolio of 

their industry peers, as measured by their participation in patent classes (henceforth “technological 

uniqueness”). In the spirit of Schumpeter’s fundamental insights around novel recombinations 

being essential to “creative destruction”, the argument follows that firms pursuing more unique 

combinations of technological trajectories are more likely to create uniquely valuable offerings 

(Wang, He, and Mahoney, 2009). For example, Apple introduced the iPhone in 2007, which was 

on many technical dimensions an inferior cellphone, but combined with new touch-screen 

technology and a new app-ecosystem turned out to be uniquely valuable to customers. 

A strong focus in strategy and economic research that parallels or builds on resource-based 

logic is that by pursuing unique technology firms have the potential to generate superior firm 
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performance (Hall, 1993; Schankerman, 1991; Bloom and Van Reenen, 2002).4 Very unique 

patent combinations will be hard to copy, because imitating such unique portfolios requires 

investment in multiple new and different technology areas, many unfamiliar to competitors. 

Moreover, such technological uniqueness from a patent portfolio perspective involves many 

potential interdependencies (Simon, 1976; Rivkin, 2000) in ways not visible within individual 

patent disclosures, which makes imitation disproportionately costly.5 Without such a barrier to 

outgoing across-firm spillovers, competitors are likely to easily imitate technologies of a focal 

firm, which limits its growth and reduces its profitability (Barney, 1991).6  

 This theoretical motivation for our portfolio-level measure of technological uniqueness 

naturally distinguishes our approach from other studies on technological resources. For example, 

in contemporaneous work, Arts, Cassiman, and Hou (2021) compose a measure of a firm’s 

technological differentiation using patent descriptions, but their approach does not measure how 

the composition of technological areas in the patent portfolio differs from competitors – a critical 

feature for in-imitability. Our technological uniqueness measure also complements the work by 

Wang, He, and Mahoney (2009) which uses a firm’s patent self-citation rate to measure the firm-

specificity of knowledge resources. However, their work emphasizes the need to embody firm-

specific knowledge in human capital,7 which transforms it into a rival resource. In contrast, the 

scale-free nature of technological uniqueness is at the heart of both the benefits and costs of 

technological uniqueness.8 We turn to the costs of technological uniqueness next. 

 
4 As stated in Barney (1991): “By definition, valuable firm resources possessed by large numbers of competing or 
potentially competing firms cannot be sources of either a competitive advantage or a sustained competitive advantage. 
(...) If a particular valuable firm resource is possessed by large numbers of firms, then each of these firms have the 
capability of exploiting that resource in the same way, thereby implementing a common strategy that gives no one 
firm a competitive advantage. The same analysis applies to bundles of valuable firm resources used to conceive of 
and implement strategies.” 
5 Specifically, while individual patents might be easy to “invent around” it will be much more challenging to invent 
around – for example - ten patents sourced in independent technology classes. To wit, if the probability to copy any 
individual patent is 50%, and all patents come from independent technology classes, then the joint probability of 
mimicking a combination of ten patents is merely 0.1% (0.001 = 0.510). 
6 Barney (1991) states: “However, valuable and rare organizational resources can only be sources of sustained 
competitive advantage if firms that do not possess these resources cannot obtain them. (...) these firm resources are 
imperfectly imitable.” 
7 Wang et al. (2009) state that “rarely can a firm automatically achieve superior economic performance from its firm-
specific knowledge resources. Instead, a firm usually requires its key employees to make complementary investments 
in human capital in the process of absorbing and deploying firm-specific knowledge.“ 
8 Our work extends beyond these studies in two additional ways. First, we seek to explore the mechanisms underlying 
the relationship between technological uniqueness and firm performance more deeply, including mechanisms that 
imply the “Technological Uniqueness Paradox” discussed above. We examine the mechanisms that suggest increased 
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2.3 Lost Incoming Across-Firm Spillovers as a Cost of Technological Uniqueness  

Firms are likely to differ in their ability to absorb or benefit from across-firm technological 

spillovers (Cohen and Levinthal, 1990). One way to elevate absorptive capacity is to strategically 

pursue technologies similar to competitors, which provides the knowledge, language and related 

technologies required to readily absorb the knowledge that competitors produce (Giustiziero, Kaul 

and Wu, 2019). Indeed, Cohen and Levinthal (1990) write that “the ability to evaluate and utilize 

outside knowledge is largely a function of the level of prior related knowledge”. This absorptive 

capacity logic can be understood as the flipside of the theoretical mechanisms that reduce outgoing 

across-firm spillovers in the previous section. If more technological uniqueness disables 

competitors from learning about a focal firm’s technology, then logic also suggests that less 

technological uniqueness also disables the focal firm from learning or absorbing knowledge from 

competitors. Therefore, ignoring the strategic benefits of uniqueness described above, this 

absorptive capacity logic predicts that technologically unique firms will enjoy more limited 

spillovers from competitors, and thereby potentially perform worse than less technologically 

unique firms. 

Consistent with this logic, Bloom et al. (2013) find that firms that are technologically 

similar to their peers, as measured by the similarity of their patent portfolios, benefit more from 

R&D spillovers. Additionally, Giustiziero et al. (2019) find in fine-grained, duopolistic medical 

device manufacturing markets that technologically distant incumbents benefit less from 

technological spillovers by entrants. However, neither of these studies has contrasted the 

absorptive capacity logic of incoming spillovers with the resource-based view on how 

technological uniqueness reduces outgoing spillovers. It is the balance of these two effects that is 

at the heart of the new “Technological Uniqueness Paradox” in this paper, so that the net effect of 

strategically choosing technological uniqueness on firm performance is potentially ambiguous. 

 

 
technological uniqueness may undermine performance. Specifically, we examine the decreased beneficial spillovers 
associated with a firm increasing its technological distance from its industry peers. We also provide evidence that 
capital markets face increased cost in evaluating firms with greater technological uniqueness, which is reflected in 
paying an increased cost of capital. Second, we use three natural experiments to examine evidence of causality in the 
relationship between technological uniqueness and firm performance. 
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2.4 Technological Uniqueness and the Cost of Capital 

A second factor may further mute any positive effect of technological uniqueness on firm 

performance. Technological uniqueness increases the information burden placed on capital market 

participants tasked with evaluating the focal firm’s unique technology. While this information 

burden discourages competitors from imitation (Lippman and Rumelt, 1982; Barney, 1996), it also 

discourages investors. As argued by Litov et al. (2012) and Benner and Zenger (2016), capital 

markets are akin to “markets for strategy”, wherein investors must evaluate strategies to decide 

which companies to invest in and what cost of capital to charge these companies. However, like 

competitors, investors in public capital markets are mostly firm outsiders and they may find it 

costly to gain information necessary for evaluation, and are therefore unable to properly evaluate 

a firm’s strategy.  

This information asymmetry between corporate insiders and capital market participants is 

rooted in at least two facts. First, firm outsiders lack (by insider trading statutes) access to relevant 

private information to complement information publicly available about individual patents. 

Second, technologically unique firms are likely to possess difficult to access knowledge about 

combinations of technologies (see Lippman and Rumelt, 1982; Rivkin, 2000). While equity 

analysts exist to help remedy such information asymmetries, technological uniqueness renders 

their task more challenging (Litov et al., 2012). These equity analysts face time constraints and 

career concerns, which often push them to specialize by industry or technology. Therefore, firms 

adopting more complex and novel combinations of technologies are anticipated to be more difficult 

to evaluate. We predict technologically unique firms will require equity analysts to exert more 

effort, and this will in turn discourage coverage by equity analysts, all else equal. Of course, the 

predicted higher returns associated with these technologically unique firms may also elevate 

demand for analyst coverage, leaving the net effect on the amount of analyst coverage an empirical 

question. Either way, if technologically unique firms are harder for investors to understand than 

non-unique firms, then as a reflection of this elevated uncertainty, the cost of capital should be 

systematically higher for unique firms. Furthermore, if equity analysts add value by reducing 

information asymmetries between investors and firms, then technologically unique firms that are 

not covered by equity analysts should be subject to disproportionately higher equity cost of capital.  
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In summary, while resource-based logic points to technological uniqueness as a potentially 

necessary condition for superior performance among technology firms, the reduced spillovers that 

accompany technological uniqueness as well as the higher cost of capital render the net effect 

ambiguous. In our empirical analysis we seek both to explore the net effect, as well as direct 

evidence of these two mechanisms that reduce the performance benefits of technological 

uniqueness.  

 

3. Data and Measurement 
To address these empirical questions, we construct a data set from several sources. We 

obtain patenting activity of public firms based on data from Kogan et al. (2017) and merge this to 

the CRSP, Compustat, and I/B/E/S databases. We base our industry classification on the Global 

Industry Classification Standard (GICS) and exclude firms from the financial (sector 40) and 

utilities (sector 55) sectors. Our final baseline sample covers a panel of 3,630 firms and 27,722 

firm-year observations over 1983-2016.  

3.1  Measuring Technological Uniqueness 

 Our measure of technological uniqueness follows Litov et al. (2012) in defining uniqueness 

relative to the activities of industry “peer” firms. However, our measure has two important 

differences. First, we classify industries according to the Global Industry Classification Standard 

(GICS) since it is a classification system commonly used by the global financial community.9 

Second, instead of measuring uniqueness by comparing a firm’s revenue activity in different 

product segments, we measure uniqueness by comparing the firm’s recent patenting activity 

against the patenting activities of firms within the same 6-digit level GICS, which after excluding 

industries with a low number of competitors leaves us with 32 broad industries. We use industry 

competitors as a reference, since a large literature in corporate strategy has argued that fungibility 

or the “degree to which the value of resources may be diminished as resources are leveraged in 

settings more distant from the original context” (Levinthal and Wu, 2010) is limited for 

technology. At the same time, we believe that the usage of 32 industry categories is quite broad 

 
9 The GICS is widely adopted as one of the standard industry analysis frameworks by the global financial analysis 
community, the others being the Industry Classification Benchmark (ICB) and the Thomson Reuters Business 
Classification (TRBC). Of the three, the GICS offers the most granularity in terms of classification (sub-industries). 
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and allows for economies of scope from unique technologies. Additionally in Online Appendix 

A2, we show that our results are robust to using either broader or narrower industry categories.  

For each firm i, we define a 129x1 vector 𝐹𝐹𝑖𝑖,𝑡𝑡 = [𝑓𝑓1,𝑖𝑖,𝑡𝑡 … 𝑓𝑓129,𝑖𝑖,𝑡𝑡]′ that captures the firm’s 

patenting activity across 129 patent technology classes at time t.10 Each entry 𝑓𝑓𝑛𝑛,𝑖𝑖,𝑡𝑡 records the 

number of firm 𝑖𝑖’s patents, in technology class 𝑛𝑛10F

11 during a rolling three-year period ending in 

𝑡𝑡. 12 This vector is then divided by the total number of patents granted to firm 𝑖𝑖 during the three-

year window. For each GICS industry I, we also define the industry centroid as a 129x1 vector 

𝐼𝐼𝑡𝑡 = �𝑖𝑖1,𝑡𝑡 … 𝑖𝑖129,𝑡𝑡�
′
. Each entry 𝑖𝑖𝑛𝑛,𝑡𝑡 records the number of patents from firms in the industry in 

technology class 𝑛𝑛12F

13 during a rolling three-year period ending in 𝑡𝑡. 13F

14 This vector is then divided 

by the total number of patents in the industry during the three-year window. 

To determine each firm’s technological uniqueness each year (𝑇𝑇𝑈𝑈𝑖𝑖,𝑡𝑡), we use the negative 

of the cosine similarity between the firm’s patenting activity vector 𝐹𝐹𝑖𝑖,𝑡𝑡 and the firm’s industry 

centroid 𝐼𝐼𝑡𝑡 , see Jaffe (1986): 

 
10 The 129 patent technology classes are based on the USPTO’s Cooperative Patent Classification (CPC) scheme 
(https://www.uspto.gov/patents/search/classification-standards-and-development). Since 2013, the USPTO has 
replaced the United States Patent Classification (USPC) with the CPC and the former is no longer being updated. The 
129 technology classes represent the section and class designations of the CPC. However, a patent can be assigned 
multiple CPC designations by the USPTO but for the first majority of the patents, the first three values of the assigned 
CPC is the same. For example, GE’s patent 7268237 was assigned the CPC values of C07C51/367 and C07C65/24. 
Based on the first three alpha-numeric values, GE’s patent would be categorized into technology class C07. In Online 
Appendix A3, we show that our results get even stronger if we use finer 4-digit patent classes, which result in 665 
different technology classes. 
11 Since a patent may be assigned to several different to technology classes, our main results utilize an equally-
weighted technology class assignment algorithm where patents are assigned to all listed technology classes equally. 
We believe that our choice of an equally-weighted technology class assignment reflects the most conservative 
approach to matching patents with their technology classes, see Online Appendix A4 for a detailed example. As we 
show in the Online Appendix A5, the results still hold qualitatively when we assign technology classes using other 
methods. 
12 We use three-year rolling windows to reduce random lumpiness in patenting due to the patent granting process, 
which can lead to random gaps in the technological uniqueness measure. The use of moving averages will therefore 
reduce at least some measurement error related to random lumpiness. Additionally, we show that using 5-year moving 
averages produces similar results in Online Appendix A6. 
13 Since a patent may be assigned to several different to technology classes, our main results utilize an equally-
weighted technology class assignment algorithm where patents are assigned to all listed technology classes equally. 
We believe that our choice of an equally-weighted technology class assignment reflects the most conservative 
approach to matching patents with their technology classes, however as we show in the Online Appendix Table A03, 
the results still hold qualitatively when we assign technology classes using other methods. 
14 In cases where a patent is assigned multiple technology classes, we apply equal weighting to each of the technology 
classes. As a robustness test, we also experiment with different technology class weights, including a value-weighted 
approach, and find qualitatively similar results. See the Online Appendix Table A03 for additional details. 

https://www.uspto.gov/patents/search/classification-standards-and-development
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𝑇𝑇𝑈𝑈𝑖𝑖,𝑡𝑡 =  −
𝐹𝐹𝑖𝑖,𝑡𝑡′ 𝐼𝐼𝑖𝑖,𝑡𝑡

�𝐹𝐹𝑖𝑖,𝑡𝑡′𝐹𝐹𝑖𝑖,𝑡𝑡�𝐼𝐼𝑖𝑖,𝑡𝑡′𝐼𝐼𝑖𝑖,𝑡𝑡
 

(1) 

To facilitate interpretation of results later, we standardize TU around a mean of 0 with unit standard 

deviation. Intuitively, technological uniqueness is higher, the lower is the correlation of a firm’s 

technology classes with the average technology classes used by other firms in the same GICS 

industry. 

[Table 1] 

Table 1 provides examples of how the technological uniqueness measure is calculated for 

firms in the Aerospace & Defense industry in 2015. Not all patent technology classes are shown 

but patenting behavior is noticeably different across the four firms. For reference, the industry 

centroid is displayed in the last column. For the typical firm in the Aerospace & Defense the most 

prominent technology classes are “Performing Operations: Aircraft; Aviation; Cosmonautics” 

with 8.4% of patents, “Physics: Measuring; Testing” with 7.9% of patents and “Physics: 

Computing; Calculating; Counting” with 6.2% of patents. Some firms, like Lockheed have similar 

priorities in their patenting with 11.1% of patents begin generated in “Physics: Measuring; 

Testing” and 9.3% of patents generated in “Physics: Computing; Calculating; Counting”. As a 

result, the standardized technological uniqueness score for Lockheed is −0.877. However, other 

firms, such as General Dynamics pursue very different technologies. Its largest patent technology 

class is “Electricity: Electric Communication Technique” with 32% of patents generated compared 

to 5% for the industry. Its next largest patent class is “Mechanical Engineering: 

Lighting:Weapons” , which accounts for 12.5% of General Dynamics’ patents, compared to almost 

1.5% for the average Aerospace & Defense industry firm. As a result, General Dynamics’ 

standardized technological uniqueness score is 0.019. 

Our measurement approach complements the independently developed measure by Arts, 

Cassiman and Hou (2021), who use patent text similarity to measure technological differentiation 

and show that it is positively correlated with firm performance. Beyond the conceptual differences 

we discussed in section 2.2, there are also important empirical differences. For example, Arts et 

al. state that “our new tech differentiation measure only weakly correlates with tech differentiation 

(class) (corr=0.109), tech differentiation (subclass) (corr=0.013), and tech differentiation 

(citation) (corr=-0.074)”. In this context, our measure of technological uniqueness corresponds to 
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what Arts et al. call “tech differentiation (class)” and as they state, our measure and theirs is only 

very weakly correlated. This highlights that our measure of technological uniqueness captures 

variation that is very distinct from Arts et al.’s measure of technological differentiation. 

 

3.2  Measurement of Technology Shocks 

Our theory discussion predicts that a focal firm’s technological uniqueness reduces the 

benefits from technological spillovers that it receives. One way to investigate this is to measure 

the impact of in-bound technological spillovers on the focal firms. Such in-bound technological 

spillover shocks can be defined as innovations by other firms that might benefit the focal firm. To 

quantify how much a focal firm might benefit from innovations by other firms, we use data on 

how intensively specific technology classes were cited by the patents of the focal firm in the last 

4 years (Jaffe, Trajtenberg, and Fogarty, 2000). A technological spillover shock is then measured 

as the total market value of all patents generated by industry peers in technology classes that the 

focal firm heavily cites.15 If this measure is constructed correctly, more patenting by other firms 

in technology classes that the focal firm uses to compose its own patents should boost its own 

performance and innovation based on the focal firm’s ability to absorb similar technologies.  

A different type of in-bound technology shock for a focal firm occurs if competitors 

successfully generate patents that result in more technological differentiation. Such (in-bound) 

technological differentiation shocks can potentially reduce a focal firm’s performance, in contrast 

to technological spillovers within patent classes in which the firm patents. We measure such 

“technological differentiation shocks” as the sum of patents occurring in patenting areas that are 

atypical for firms within a given GICS industry.16  

 
15 First, we identify commonly cited technology classes of the focal firm during the past 4 years. Next, for each focal 
firm in each GICS industry, we obtain the value of all patents – measured by the Kogan et al. (2017) stock market 
values of patents – by peer firms in these commonly cited technology classes. Then, these technology class shocks are 
citation-weighted and aggregated to the annual firm level and standardized such that more heavily cited technology 
classes by the focal firm and more valuable patents, have the largest spillover impact on the focal firm. 
16 We define atypical as the technology classes for each industry in which less than 50% of all assigned technology 
classes from patents granted to firms in the industry are classified into over the past 4 years. Similar to the construction 
of our technology spillover shock measure, patents in these irregular patenting areas are value-weighted first, then 
citation-weighted at the firm level, and finally aggregated to the industry-year level and standardized. 



14 
 

3.3  Performance measures 

 We use Compustat data to construct our performance measures: sales growth, Tobin’s Q, 

Profitability, and ROA.  

3.4  Analyst Coverage variables 

 Our analyst coverage model studies the impact of the firm’s technological uniqueness 

choice on analyst coverage behavior. We consider three dependent variables: Adjusted Coverage, 

Analyst Attention, and Analyst Effort. All three variables are constructed using I/B/E/S data and 

measure analysts’ coverage behavior of the focal firm. Adjusted Coverage is the number of 

analysts currently covering a firm, scaled by the total number of analysts covering the GIC 

industry. Analyst Attention is the total number of analysts covering the firm. Analyst Effort is the 

negative of the number of other firms that the analyst is covering besides the focal firm. The 

presumption is that the effort associate with analyzing a specific firm is negatively correlated with 

the number of other firms an analyst can cover. 

3.5  Cost of capital variables 

 Based on prior work (Claus and Thomas, 2001; Easton, 2004; Gebhardt et al., 2001; Ohlson 

and Juettner-Nauroth, 2005), we compute four measures of the firm’s cost of capital. Each of the 

four measures is winsorized at the 1% level to reduce the impact of annual firm outliers. We also 

define a variable, analyst coverage loss, as the negative of the number of analysts that are covering 

the focal firm each year. Thus, an increase in the firm’s analyst coverage loss in any given year 

reflects a reduction in the number of total analysts covering that firm that year.  

4. Empirical Approach 

4.1 Firm Performance Analysis 

Our dependent variables are denoted by 𝑦𝑦𝑖𝑖,𝑡𝑡 for firm 𝑖𝑖 at time 𝑡𝑡 and capture our performance 

outcomes, such as sales growth, profitability, ROA and Tobin’s Q. Our primary independent 

variable of interest is technological uniqueness as defined in the last section and is denoted 𝑇𝑇𝑈𝑈𝑖𝑖,𝑡𝑡. 

We include a complete set of firm fixed effects 𝐷𝐷𝑖𝑖 to remove any selection on unobservable time-

invariant firm characteristics, such as founder effects or very persistent characteristics, such as 

firm culture. Furthermore, we control for a full set of industry-by-time fixed effects 𝐷𝐷𝑠𝑠 × 𝐷𝐷𝑡𝑡, to 

ensure that differential industry trends do not drive our results. We also include a full set of 

location-by-time fixed effects 𝐷𝐷𝑙𝑙 × 𝐷𝐷𝑡𝑡 to remove location-specific time trends and location-based 
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effects such as geographical knowledge spillovers. The baseline OLS specification can then be 

written as 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽 ⋅ 𝑇𝑇𝑈𝑈𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 × 𝐷𝐷𝑡𝑡 + 𝐷𝐷𝑙𝑙 × 𝐷𝐷𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 (2) 

  

Where 𝜖𝜖𝑖𝑖,𝑡𝑡 is an error term and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 are additional, firm-level control variables. We control 

for firm size, using total sales and firm growth over the past 3 years, in order to address the 

possibility of mean reversion in outcomes. Since technological uniqueness is related to investments 

in intangibles, we include three measures of such intangible investments: R&D intensity, 

advertising intensity (i.e., advertising expenditures relative to sales), and book value of intangibles 

assets relative to total assets. To account for the idea that our measure of technological uniqueness 

might capture idiosyncratic risk, we include the coefficient of variation of earnings. Furthermore, 

we include the log number of shareholders as a control variable for dispersed ownership of firms 

(Oehmichen et al., 2021). We take a very general approach to control for potential product 

diversification effects by including separate dummy variables for firms with 2, 3, and more than 4 

product segments. We control for potential market power effects by including a measure of both 

the average market share across business segments for each firm, as well as a “Main Market 

Concentration Index” (MMCI), which measures the average concentration (Herfindahl index) 

across all business segments. For both measures, the averages are sales-weighted.  

4.2 Endogeneity Issue in Firm Performance Analysis and IV Approach 

Despite our use of a comprehensive set of control variables, there may be reasonable 

concerns about using OLS regressions to establish a causal effect of technological uniqueness on 

firm performance. On the one hand, OLS might lead to an upward bias in estimating the effect of 

technological uniqueness on firm performance. This could occur, for example, because only some 

firms are able to afford the R&D needed to generate a technologically unique portfolio of patents. 

On the other hand, OLS might lead to a downward bias of the effect of technological uniqueness 

on firm performance if technologically unique firms tend to prioritize exploration and therefore 

tend to exhibit low profitability in the present (March, 1991), which is an example of a strategy 

selection bias (Hamilton and Nickerson, 2003). To address these concerns, we introduce several 
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instrumental variables to establish the causal relationship between technological uniqueness and 

firm performance.17  

4.2.1 Centroid IV 

The first instrumental variable is based on changes in the average patenting portfolio of 

firms in the industry (“industry centroid”) and is therefore referred to as “Centroid IV”. The key 

idea of this IV is as follows: when companies in the same industry pursue similar technology 

trends, they inadvertently leave unaddressed niches, which create opportunities. A focal firm can 

stand out by specializing in these technological niche areas and, therefore, more easily create a 

unique technology portfolio. For example, in the early 2000s, major cellphone manufacturers such 

as Nokia and Research-in-Motion, which produced the “Blackberry”, focused on technologies 

surrounding 3-G call quality, GPS, phone battery life, message encryption, and keyboard quality. 

Apple’s iPhone, introduced in 2007, lagged behind in all those dimensions but had the unique 

feature of a touchscreen, which ended up becoming the dominant design feature. We construct a 

shift-share (or “Bartik” style) IV, based on the idea that firms in technology locations with high 

local clustering with other firms in the same industry will pay more attention to industry centroid 

changes. The first stage of our IV estimator is given by: 

𝑇𝑇𝑈𝑈𝑖𝑖,𝑡𝑡 = 𝛾𝛾 ⋅ 𝑍𝑍𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 × 𝐷𝐷𝑡𝑡 + 𝐷𝐷𝑙𝑙 × 𝐷𝐷𝑡𝑡 + 𝑒𝑒𝑖𝑖,𝑡𝑡 (3) 

  

Where 𝑍𝑍𝑖𝑖,𝑡𝑡 = 𝑠𝑠𝑠𝑠,𝑙𝑙 × Δ𝐶𝐶𝑠𝑠,𝑡𝑡−1 is the instrument, with 𝑠𝑠𝑠𝑠,𝑙𝑙 as initial industry shares in terms of revenue 

in location 𝑙𝑙 and Δ𝐶𝐶𝑠𝑠,𝑡𝑡−1 as lagged changes in the “leave-out-mean” (or “Hausman-IV”) industry 

patenting centroids. As we discuss below, we use leave-out-means to purge out any direct effects 

of changes in patenting of the focal firm, which might lead to a mechanical correlation between 

our IV and technological uniqueness. The combination of exogenous industry-level shocks and 

local exposure shares have recently been widely used in applied econometric work, see Borusyak 

et al. (2022). Importantly, the use of the shift-share IV allows us to add a full set of industry-by-

year fixed effects 𝐷𝐷𝑠𝑠 × 𝐷𝐷𝑡𝑡 and location-by-year fixed effects 𝐷𝐷𝑙𝑙 × 𝐷𝐷𝑡𝑡, as the identifying variation 

 
17 For the clustering of standard errors, we follow in the spirit of Abadie et al. (2022) and use cluster at the level of the 
exogenous variation, which is industry-by-time clusters for the IVs in section 4.2.1 and 4.2.3 and region-by-time 
cluster for the IV in section 4.2.2. 
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in the first (3) and the second stage (4) estimates, as the IV estimation relies on the interaction of 

industry shocks and local cross-sectional variation.  

The second stage is given by:  

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽 ⋅ 𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 × 𝐷𝐷𝑡𝑡 + 𝐷𝐷𝑙𝑙 × 𝐷𝐷𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 (4) 

𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡 are conceptually the predicted values from the first stage, even though we estimate (3) and 

(4) simultaneously. 

This IV has several advantages. First, leave-out-mean centroid changes directly address 

reverse causality, since these changes by construction, omit the focal firm. At the same time, 

lagged centroid changes reflect patenting by a firm’s industry rivals and therefore generate an 

incentive by the focal firm to respond. Finally, since local industry clustering is more likely to be 

exogenous, a shift-share style IV should provide more robust estimates, with the additional 

advantage that we are able to include a full set of industry-by-year fixed effects.  

Second, we retain a full set of firm fixed effects, thereby allowing us to focus on the within-

firm patenting response to exogenous changes in the industry patent portfolio. This helps to address 

selection bias on permanent unobservables. Third, our IV strategy is also attractive in the context 

of the necessary IV exclusion restriction. To understand this, let us fix ideas by denoting with 𝑥𝑥� 

any variable 𝑥𝑥, from which we removed the impact of the control variables and fixed effects listed 

under (3) and (4). Then, the IV estimate can be written as:  

𝛽̂𝛽𝐼𝐼𝐼𝐼 = 𝛽𝛽 +
𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖̃𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡�
𝐶𝐶𝐶𝐶𝐶𝐶�𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡�

 
(5) 

with 𝐶𝐶𝐶𝐶𝐶𝐶�𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡� > 0, as the first stage will establish that industry centroid changes increase 

uniqueness at the focal firm. The IV estimate will be biased towards finding that more 

technological uniqueness increases firm performance if 𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖̃𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡� > 0. However, this is 

unlikely, since our shift-share Centroid-IV is a leave-out-mean, which means 𝑍𝑍�𝑠𝑠,𝑡𝑡 only reflects 

changes in technology trends at competing firms. In turn, competitors in an industry will only 

patent technologies they anticipate to be profit-maximizing, which should reduce profits at the 

focal firm. In other words, if competitors in the industry only patent technologies that they believe 
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will increase their own profits, then it should be true that 𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖̃𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡� < 0, which will lead to an 

underestimate of the true causal performance effect of technological uniqueness.  

4.2.2 R&D tax credit IV 

 Our second identification strategy is based on state-level changes in R&D tax credits. This 

exogenous variation has previously been used by Bloom et al. (2013), but we utilize it in a novel 

way. Specifically, we hypothesize that higher R&D tax credits will incentivize firms to increase 

R&D spending on marginal innovations instead of radical innovations, since these are easier to 

obtain and will still earn the tax deductions from the R&D tax credits. Such marginal innovations 

in turn are by definition very similar to already existing patented technologies and will therefore 

tend to reduce firms’ technological uniqueness. This allows us to estimate a different type of causal 

performance effect of technological uniqueness. The Centroid-IV estimates the positive 

performance effects of technological uniqueness: more technological uniqueness causes firms to 

outperform. However, it is theoretically possible for less technologically unique firms to deliver 

average performance instead of under-performing. The R&D tax credit allows us to test whether 

there are negative performance effects of less technological performance: firms that reduce their 

technological uniqueness consequently underperform.  

We follow Bloom et al. (2013) and construct exogenous R&D capital stocks using 

exogenous changes to federal and state-level R&D tax credits: 

𝑍𝑍𝑖𝑖,𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1 ∗ log�𝐹𝐹𝐹𝐹𝐶𝐶𝑖𝑖,𝑡𝑡� + 𝛽𝛽2 log�𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖,𝑡𝑡� + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 + 𝐷𝐷𝑙𝑙 (6) 

where 𝑍𝑍𝑖𝑖,𝑡𝑡 are (log) R&D expenditures of firm i at time t and 𝐹𝐹𝐹𝐹𝐶𝐶𝑖𝑖,𝑡𝑡 and 𝑆𝑆𝑆𝑆𝐶𝐶𝑖𝑖,𝑡𝑡 are the Federal 

R&D and State R&D tax credits, based on the location (state) of the firm i at time t. We use firm 

fixed effects 𝐷𝐷𝑖𝑖, location fixed effects 𝐷𝐷𝑙𝑙 and industry fixed effects 𝐷𝐷𝑠𝑠. We then use the exogenous 

R&D capital stock as an instrument to predict technological uniqueness:  

𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡 = 𝛾𝛾 ⋅ 𝑍𝑍𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 + 𝐷𝐷𝑙𝑙 + 𝜖𝜖𝑖𝑖,𝑡𝑡 (7) 

We expect that 𝛾𝛾 < 0, because R&D tax credits are likely to stimulate marginal innovations that 

mimic peers and reduce technological uniqueness. This prediction concerning how R&D tax 

credits affect technological uniqueness is novel and not recognized in the original work by Bloom 

et al. (2013). In the second stage, the predicted TU values are used as an IV for firm performance: 



19 
 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽 ⋅ 𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 + 𝐷𝐷𝑙𝑙 + 𝜖𝜖𝑖𝑖,𝑡𝑡 (8) 

Our prediction is that 𝛽𝛽 > 0, which in the case of 𝛾𝛾 < 0 will only be true if firms with higher 

values of 𝑍𝑍𝑖𝑖,𝑡𝑡 have lower performance. To see this, define the reduced form as 

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛿𝛿 ⋅ 𝑍𝑍𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 + 𝐷𝐷𝑙𝑙 + 𝜖𝜖𝑖𝑖,𝑡𝑡 (9) 

Then it can be shown that:  

𝛽̂𝛽𝐼𝐼𝐼𝐼 =
𝛿𝛿
𝛾𝛾�

 
(10) 

In the case of the R&D Tax Credit IV, our prediction is that 𝛾𝛾� < 0 so that 𝛽̂𝛽𝐼𝐼𝐼𝐼 > 0 only if 𝛿𝛿 < 0, 

which in turn means that firms with higher values of 𝑍𝑍𝑖𝑖,𝑡𝑡 tend to lower firm performance 𝑦𝑦𝑖𝑖,𝑡𝑡. 

Again, a critical question is whether the exclusion restriction holds and as before we base 

our discussion on equation (5) with 𝑥𝑥� denoting any variable 𝑥𝑥, from which we removed the impact 

of the control variables and fixed effects listed under (3) and (4):  

𝛽̂𝛽𝐼𝐼𝐼𝐼 = 𝛽𝛽 +
𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖̃𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡�
𝐶𝐶𝐶𝐶𝐶𝐶�𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡�

 

 

Where, due to the first stage, we expect 𝐶𝐶𝐶𝐶𝐶𝐶�𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡� < 0. Under this condition, the IV estimate 

will only overestimate the impact of technological uniqueness on firm performance if 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖̃𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡� < 0. In other words, tax-credit induced R&D needs to directly reduce firm 

performance to induce an upwards bias on our IV estimates. At the same time, the empirical 

findings in Bloom et al. (2013) have shown that exogenous R&D, in fact, tends to increase firm 

performance as measured by productivity and Tobin’s Q. Therefore, our analysis suggests that if 

anything, IV estimates using R&D tax credits will tend to underestimate the effect of technological 

uniqueness on firm performance.  

 4.2.3 Patent Expiration IV 

 Our third IV is based on industry-level patent expiration shocks. The key idea of this 

empirical approach is that if many patents in the industry expire mandatorily, this will tend to 

reduce technological uniqueness at a focal firm, since it is now legally allowed to use technologies 

with mandatorily expired patents for its upcoming inventions. As in the case of the Centroid-IV, 

we construct the Patent Expiration IV using a leave-out-mean, which facilitates identification, as 



20 
 

discussed below. As in the case of R&D Tax Credits, this Patent Expiration IV will estimate 

negative performance effects of technological uniqueness, as we expect less technologically 

unique firms to underperform. 

For each year for each industry s, we compute a vector of expiring patent-shares across all 

technology classes based on the prior patents granted to peer firms 18 or 20 years ago.18 These 

expiring patent shares are then used to construct a Bartik-style IVs by multiplying them with firm-

level variables that measure the initial distribution of patents a firm has across technology classes. 

This shift-share approach postulates that patent expirations should be more important for a focal 

firm if it uses the technology classes in which the patents expire more. The first stage of this IV 

approach is given by:  

𝑇𝑇𝑈𝑈𝑖𝑖,𝑡𝑡 = 𝛾𝛾 ⋅ 𝑍𝑍𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 + 𝐷𝐷𝑙𝑙 + 𝑒𝑒𝑖𝑖,𝑡𝑡 (11) 

With 𝑍𝑍𝑖𝑖,𝑡𝑡 = 𝑃𝑃𝑠𝑠,𝑇𝑇 × Δ𝑃𝑃𝑠𝑠,𝑡𝑡, where 𝑃𝑃𝑠𝑠,0 is the initial industry-level patent granted shares and Δ𝑃𝑃𝑠𝑠,𝑡𝑡 is 

the annual vector of expiring patents. As we discussed, we expect that 𝛾𝛾 < 0, since more patent 

expirations should lead to less technological uniqueness as all firms in an industry have free access 

to technology with expired patents. The predicted technological uniqueness from (8) is then used 

to predict firm performance, as before.  

𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝛽𝛽 ⋅ 𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 + 𝐷𝐷𝑙𝑙 + 𝜖𝜖𝑖𝑖,𝑡𝑡  

As in the context of the R&D Tax Credits, our prediction is that 𝛽𝛽 > 0, because firms with less 

technological uniqueness will tend to underperform. 

There are at least two ways the exclusion restriction for the Patent Expiration IV might fail. 

On the one hand, the timing of patent expirations might be correlated with technological or growth 

opportunities. However, such a correlation is unlikely, since patents expire 20 years after they are 

being granted. For industry-wide patent expirations to be correlated with current technological or 

competitive conditions, firms would need to accurately forecast technological or industry forces 

20 years into the future. We believe that accurate forecasts over such long horizons are implausible. 

 
18 In 1994, the United States enacted the Uruguay Round Agreements Act which changed the patent term from based 
on the grant date of the patent to the application date of the patent. For patents with application dates after June 7, 
1995, their patent terms last 20 years from the application date. This is the definition that we use to determine when 
patents expire.  
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On the other hand, patent expirations imply that intellectual property rights mandatorily 

expire, which might directly impact profits. To further understand the threat to the exclusion 

restriction criterion, we again denote with 𝑥𝑥� any variable 𝑥𝑥, from which we removed the impact of 

the control variables and fixed effects listed under (3) and (4). The IV estimator can therefore be 

written as  

𝛽̂𝛽𝐼𝐼𝐼𝐼 = 𝛽𝛽 +
𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖̃𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡�
𝐶𝐶𝐶𝐶𝐶𝐶�𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡�

 

 

Since 𝐶𝐶𝐶𝐶𝐶𝐶�𝑇𝑇𝑇𝑇�𝑖𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡� < 0 for the Patent Expiration IV, the IV estimator will only be biased 

towards a positive coefficient if 𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖̃𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡� < 0, i.e., more industry patent expirations reduce 

profits. However, the Patent Expiration IV is constructed as a leave-out-mean, which means that 

the patent expiration of the focal firm is not included. At the same time, patent expirations at 

competitors will tend to increase performance at the focal firm, which would imply 

𝐶𝐶𝐶𝐶𝐶𝐶�𝜖𝜖𝑖̃𝑖,𝑡𝑡,𝑍𝑍�𝑠𝑠,𝑡𝑡� > 0, which suggests that our IV strategy likely underestimates the true causal effect.  

4.2.4 Profiling Compliers 

According to a prominent view, strategic management should tailor business policy 

recommendations to suit specific types of companies or particular circumstances instead of 

offering "universal best practices" (Barney, 1986; Porter and Siggelkow, 2008). Barney (1986) 

pointed out that it is more beneficial to understand what makes certain companies successful in 

specific contexts, rather than looking for common strategies that every company in an industry 

could use. This is because targeted strategies are more likely to provide a competitive edge. 

Complier analysis is a method to empirically characterize the companies for which uniqueness 

causes outperformance or underperformance. Therefore, complier analysis offers strategic 

recommendations that are more practical and directly applicable to certain firms but not others, 

making our guidance far more valuable for executives. At the same time, complier analysis allows 

us to empirically characterize how compliers differ empirically from the rest of the sample, leading 

to deeper understanding of why the quantitative magnitudes of IV estimates might differ from each 

other and from OLS results. 

Complier firms are defined as firms that are responsive to an IV (Angrist and Pischke, 

2009). The basic idea of this analysis is based on Angrist, Imbens and Rubin (1996) who showed 
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that under some conditions, IV estimates reflect the causal effects of the treatment on the compliers 

instead of the whole sample of treated firms, which also includes “always takers”, who would have 

taken treatment even without the encouragement of the instrument. We note that traditional 

complier analysis relies on binary instruments and binary treatment variables, in contrast to the 

continuous treatment variable of technological uniqueness and our continuous instrumental 

variables.19 We therefore dichotomize the relevant variables in the following way. We construct a 

binary version of our instruments, denoted by 𝐸𝐸𝑖𝑖. 𝐸𝐸𝑖𝑖 will be one for above average values for the 

Centroid IV, the R&D Tax Credit IV and the Patent Expiration IV. Our treatment variable 𝑇𝑇𝑖𝑖 is 

derived from our measure of technological uniqueness. For the Centroid IV, our prediction is that 

stronger industry centroid changes will lead to more uniqueness at the focal firm, so we construct 

a treatment indicator 𝑇𝑇𝑖𝑖 which is one if the technological uniqueness measure is above average and 

zero otherwise. In contrast for both the R&D Tax Credit IV as well as the Patent Expiration IV, 

our prediction is that higher values of the IV will induce less technological uniqueness. Therefore, 

for these variables, we construct a treatment indicator 𝑇𝑇𝑖𝑖 which is one if the technological 

uniqueness measure is below average and zero otherwise. Following potential outcomes notation 

(Rubin, 1974), let 𝑇𝑇1,𝑖𝑖 denote the treatment value for firm 𝑖𝑖, when the instrument is 𝐸𝐸𝑖𝑖 = 1 and 𝑇𝑇0,𝑖𝑖 

for 𝐸𝐸𝑖𝑖 = 0. Under this notation, and with the proper definition of treatment group 𝑇𝑇𝑖𝑖, compliers are 

defined as the set of firms for which 𝑇𝑇1,𝑖𝑖,−𝑇𝑇0,𝑖𝑖 ≥ 0, which is also called the “monotonicity 

assumption” in Angrist, Imbens and Rubin (1996). Under these definitions and assumptions, the 

fraction of compliers in the overall sample can be calculated as:  

𝑃𝑃�𝑇𝑇1,𝑖𝑖 > 𝑇𝑇0,𝑖𝑖� = 𝑃𝑃(𝑇𝑇𝑖𝑖|𝐸𝐸𝑖𝑖 = 1) − 𝑃𝑃(𝑇𝑇𝑖𝑖|𝐸𝐸𝑖𝑖 = 0) (12) 
 

Furthermore, the percentage of compliers relative to all treated firms can be calculated as 

𝑃𝑃�𝑇𝑇1,𝑖𝑖 > 𝑇𝑇0,𝑖𝑖 | 𝑇𝑇𝑖𝑖 = 1� =
𝑃𝑃(𝐸𝐸𝑖𝑖 = 1) ⋅ �𝑃𝑃(𝑇𝑇𝑖𝑖|𝐸𝐸𝑖𝑖 = 1) − 𝑃𝑃(𝑇𝑇𝑖𝑖|𝐸𝐸𝑖𝑖 = 0)�

𝑃𝑃(𝑇𝑇𝑖𝑖 = 1)
 

(13) 

 

 
19 We also note that standard complier analysis relies on a set of fully saturated controls. We have too many continuous 
control variables to generate saturated controls for all control variables and still have variation left over to analyze, 
and the literature does not currently offer a way to choose which control variables to saturate in a principled way. 
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To show the empirical differences between compliers and average firms in the sample, we follow 

Angrist and Pischke (2009) and define indicator variables 𝑋𝑋𝑖𝑖, which are one if firm i exhibits an 

above-average value of some characteristic 𝑋𝑋 and zero otherwise. Based on this and our other 

definitions, we will calculate the quantity 

𝑃𝑃�𝑋𝑋𝑖𝑖 = 1| 𝑇𝑇1,𝑖𝑖 > 𝑇𝑇0,𝑖𝑖�
𝑃𝑃(𝑋𝑋𝑖𝑖 = 1) =

𝑃𝑃(𝑇𝑇𝑖𝑖|𝐸𝐸𝑖𝑖 = 1,𝑋𝑋𝑖𝑖 = 1) − 𝑃𝑃(𝑇𝑇𝑖𝑖|𝐸𝐸𝑖𝑖 = 0,𝑋𝑋𝑖𝑖 = 1)
𝑃𝑃(𝑇𝑇𝑖𝑖|𝐸𝐸𝑖𝑖 = 1) − 𝑃𝑃(𝑇𝑇𝑖𝑖|𝐸𝐸𝑖𝑖 = 0)  

(14) 

 

Equation (11) shows how to calculate the odds of how much more likely complier firms are to 

exhibit above-average values for characteristic 𝑋𝑋 than average firms in the sample. For example, 

values such as 𝑃𝑃�𝑋𝑋𝑖𝑖=1| 𝑇𝑇1,𝑖𝑖>𝑇𝑇0,𝑖𝑖�
𝑃𝑃(𝑋𝑋𝑖𝑖=1) = 1 will mean that complier firms are about as likely to have above 

average characteristic 𝑋𝑋 as the average firm in the sample. In contrast if 𝑃𝑃�𝑋𝑋𝑖𝑖=1| 𝑇𝑇1,𝑖𝑖>𝑇𝑇0,𝑖𝑖�
𝑃𝑃(𝑋𝑋𝑖𝑖=1) = 2, then 

compliers are twice as likely as average firms with have an above-average value of 𝑋𝑋.  

4.3 Analyst Regressions and Cost of Capital 

The analyst coverage and analyst effort regressions take the form 

𝐴𝐴𝑖𝑖,𝑡𝑡 = 𝛿𝛿 ⋅ 𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 × 𝐷𝐷𝑡𝑡 + 𝐷𝐷𝑙𝑙 × 𝐷𝐷𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 (15) 

  

Where 𝐴𝐴𝑖𝑖,𝑡𝑡 is either adjusted analyst coverage or analyst effort. We include a full set of firm fixed 

effects, industry-by-year fixed effects and location-by-year fixed effects. For the firm-level 

controls in (15), we follow the literature on understanding analyst forecasts (Dong et al., 2021, 

Jackson, 2005, and Litov et al., 2012) and include log assets, market-to-book ratio, intangible asset 

ratio, stock price volatility, log stock turnover and stock return. The theoretical predictions from 

section 2 would predict that 𝛿𝛿 > 0 for analyst effort as more technologically unique firms are 

harder to understand. On the flipside, high effort costs to understand technologically unique firms 

also imply low attention by analysts unwilling to invest this effort cost. Therefore, we predict 𝛿𝛿 <

0 for (15) where analyst attention is the dependent variable. 

In addition to the OLS specifications in (15), we also analyze the extensive margin of 

analyst coverage, i.e. time until analysts pick up coverage of technologically unique firms that are 



24 
 

currently not covered and time until analysts drop technologically unique firms that are currently 

covered. For this purpose, we use Cox proportional hazard models: 

ln�
ℎ𝑖𝑖(𝑡𝑡)
ℎ𝑖𝑖,0(𝑡𝑡)

� = 𝜙𝜙 ⋅ 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖 + 𝑢𝑢𝑖𝑖 
(16) 

  

where ℎ𝑖𝑖(𝑡𝑡) is a hazard function, capturing the probability of the event (analyst begins coverage 

of firm 𝑖𝑖 or analyst drops firm 𝑖𝑖 from coverage) at time 𝑡𝑡. ℎ𝑖𝑖,0(𝑡𝑡) is the baseline hazard of that 

event, so that the hazard model will capture whether technologically unique firms are more or less 

likely to be covered or dropped from coverage. As control variables we include the controls from 

(15), namely log assets, market-to-book ratio, intangible asset ratio, stock price volatility, log stock 

turnover and stock return. 

We directly quantify the capital market costs of reduced equity analyst coverage using 

different measures for the cost of capital 𝑟𝑟𝑖𝑖,𝑡𝑡 as dependent variable in the following regression: 

𝑟𝑟𝑖𝑖,𝑡𝑡 = 𝜅𝜅1 ⋅ 𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡 + 𝜅𝜅2 ⋅ �𝐴𝐴𝑖𝑖,𝑡𝑡 × 𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡� + 𝜅𝜅3 ⋅ 𝐴𝐴𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑖𝑖,𝑡𝑡 + 𝐷𝐷𝑖𝑖 + 𝐷𝐷𝑠𝑠 × 𝐷𝐷𝑡𝑡
+ 𝐷𝐷𝑙𝑙 × 𝐷𝐷𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑡𝑡 

(17) 

  

Where 𝐴𝐴𝑖𝑖,𝑡𝑡 denotes changes in analyst coverage from (15) and we include the control 

variables using in the OLS performance regressions in (1), in addition to firm fixed effects, 

industry-by-year fixed effects and location-by-year fixed effects. The main prediction is that 𝜅𝜅1 >

0, because more technologically unique firms will be forced to pay higher costs of capital and 

unique firm with lower coverage by equity analysts will be forced to pay a disproportionate cost 

of capital premium, 𝜅𝜅2 > 0. 

5. Results  

5.1 Technological Uniqueness and Firm Performance 

We begin by analyzing the relationship between firm performance and technological 

uniqueness in Table 3. 

[Table 3] 
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The main result from Table 3 is that higher technological uniqueness is associated with 

better performance. Technologically unique firms exhibit higher sales growth as shown in column 

1, and have higher long-run performance prospects as measured by Tobin’s Q in column 2. At the 

same time, growth does not displace profitability but rather accompanies it. Technologically 

unique firms’ current profitability and ROA is higher than their industry peers, as shown in 

columns 3 and 4 of Table 3. While these performance correlations do not rule out that more 

technological uniqueness acts as a barrier to inbound technological spillovers, they do suggest that 

the costs of such reduced beneficial spillovers are not dominating. Instead, the performance results 

show that technologically unique firms exhibit at least a temporary competitive advantage, 

consistent with the view that technological uniqueness is a type of strategic resource (Barney, 

1991). 

Technological uniqueness is associated with quantitatively large performance advantages. 

To understand these, it is useful to point out that our technological uniqueness measure is 

standardized to have a unit standard deviation. Therefore, firms which increase their technological 

uniqueness by one standard deviation exhibit 2.3% higher sales growth rate, a 6.9% higher Tobin’s 

Q, and 0.8% higher profitability and ROA per year—all rather economically significant 

relationships.  

Although the results in Table 3 are not estimated to support causal claims, they are 

remarkably robust, as they are estimated using a full set of firm fixed effects, industry-by-year 

fixed effects and region-by-year fixed effects, in addition to a large set of control variables shown 

in the table. And although this robustness does not rule out unobservable, omitted and time-varying 

firm-level factors driving the relationship between firm performance and technological 

uniqueness, the results suggest that technological uniqueness is a robust predictor of firm 

performance. The usage of the different fixed effects also matters for qualitatively interpreting the 

OLS performance estimates. Since all our specifications include firm fixed effects, the 

performance correlations measure changes in performance accompanying changes in 

technological uniqueness within firms. Furthermore, since we include a full set of industry-by-

time fixed effects, the OLS estimates remove any time-varying industry differences. In particular, 

one might wonder whether changes in technological uniqueness are mostly driven by changes in 

patenting of the focal firm or changes in the industry centroid. However, due to the inclusion of 
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industry-by-time fixed effects, all changes in technological uniqueness exclusively reflect changes 

in patenting composition by the focal firm, while controlling for industry centroid changes.  

Table 3 shows that firms which increase their technological uniqueness exhibit a 

contemporaneous increase in sales, stock market valuation, profitability and ROA. But how 

persistent are these effects? The answer is displayed in Table 4, which estimates performance 

correlations up to 5 years after changes in technological uniqueness. We note that all specifications 

in Table 4 include the same set of controls as Table 3, but we only display the coefficients on 

technological uniqueness to save space. 

[Table 4] 

The main finding of Table 4 is that performance improvements associated with increased 

technological uniqueness persist as statistically significant for up to 5 years. These results raise the 

question of how technological uniqueness has this sustained effect. We approach this question in 

three steps. In section 5.2, we seek evidence of a causal relationship between technological 

uniqueness and firm performance. In section 5.3, we characterize the set of firms for which such 

causal effects are estimated. In section 5.4, we then analyze the mechanisms through which firms 

benefit from being technologically unique. Sections 5.4 and 5.5 then investigate the costs of 

technological uniqueness associated with restrained in-coming spillovers and elevated evaluation 

costs.  

5.2 Causal Performance Effects from Technological Uniqueness 

Table 5 displays our results from our different IV estimations discussed in section 4.2. The 

first column of each panel confirms that in each case we indeed have relevant instruments.  

[Table 5] 

Broadly our results in Table 5 confirm that increased technological uniqueness causes 

better firm performance. Throughout the table, the IV results are qualitatively consistent with our 

OLS results from Table 3. This consistency is especially reassuring, because the different IV 

approaches rely on very different natural experiments, including changes in industry technology 

trends for the Centroid-IV, changes in R&D tax-credits and industry waves of patent expirations. 

Additionally, all of our IV estimates include a full set of firm fixed effects, industry fixed effects 
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and region fixed effects, and the Centroid-IV results also including industry-by-year and region-

by-year fixed effects.  

Among our IV estimates, Panel A and Panel C show results of very similar magnitudes, 

while the effect sizes for the R&D tax credit IV are mostly larger. In addition, the magnitudes of 

all IV estimates are at least an order of magnitude larger than the OLS results. There are at least 

two reasons for these larger IV estimated effects of technological uniqueness on performance 

relative to the OLS estimates. First, our measure of technological uniqueness is likely subject to 

classical measurement error, which implies attenuation of estimated OLS coefficients towards zero 

(see Angrist and Pischke, 2009.) Attenuation bias is even stronger in panel data with a very detailed 

level of fixed effects, which is likely to lead to “over-differencing”. In Online Appendix A7, we 

show OLS estimates using only firm and year fixed effects, which exhibit larger magnitudes than 

our estimates in Table 3, consistent with over-differencing. Second, each of the IVs is likely to 

induce only a small set of firms to respond, leading to very large effect sizes for the minority of 

firms that do. It is well-known that such Local Average Treatment Effects (LATE) can lead IV 

estimates to differ from OLS, even in the absence of measurement error or omitted variables bias 

(see Angrist and Pischke, 2009). We therefore next turn to a complier analysis of our different 

instruments.  

5.3 Complier Analysis for Different IVs 

To shed further light on which companies the different IV estimates apply to, we follow 

the methodology outlined in section 4.2.4 and provide a complier analysis in Table 6.  

[Table 6] 

Panel A of Table 6 shows that the percentage of compliers is moderate, ranging from 7.5% 

to 11.33% of the respective estimation samples. The instrument with the largest group of compliers 

is the Patent Expiration IV, for which compliers account of 11.33% of sample firms.  

Panel B of Table 6 documents that the complier groups across all three IVs are very 

different. The key entries are the even number columns, i.e. column (2), (4) and (6) as these 

columns show how much more likely firms in the complier group are to have firms with above-

average characteristic X, compared to average firms in the sample. For example, in the first row, 

the characteristic X is having “many geographic segments” and first entry of column (2) says that 
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compliers of the Centroid IV are 2.45 times more likely to have above-average number of 

geographic segments than average firms. In other words, firms with many geographic segments 

disproportionately benefit from being able to simultaneously deploy their unique technologies 

across many local markets, exactly as we discussed in section 2.1. Centroid-IV compliers also are 

32% more likely to have above-average number of business segments, are 41% more likely to have 

above-average market share, are 2.06 times more likely than the average firm to exhibit above-

average growth. They are also 44% more likely to be above-average in R&D spending, 50% more 

likely to be above-average in advertising spending, and 32% more likely to have above-average 

intangible capital. Large and positive causal performance effects of higher technological 

uniqueness therefore especially apply to firms that can benefit from the scale-free nature of 

technological uniqueness while investing strongly in R&D, advertising and intangible capital.  

Compliers for the R&D Tax Credit are very different in nature. They are firms that suffer 

large performance drops from lower technological uniqueness, as shown by the large IV estimates 

in Table 5. Table 6 shows that these complier firms are 2.08 times more likely to have high R&D. 

At the same time, R&D Tax Credit compliers are 47% less likely to have above-average market 

share and are 73% less likely to have above-average market growth. This suggests that lower 

technological uniqueness especially hurts if a firm does not have sufficient scale in the first place.  

Patent Expiration-IV compliers tend to be as likely as average firms to have above-average 

growth rates or many geographic or business segments, but they are also 44% less likely to have 

above-average market shares. At the same time, Patent Expiration-IV compliers are 35% less likely 

to have above-average advertising expenses while they are 40% more likely to exhibit high 

intangible capital, compared to average sample firms. This combination highlights that small firms 

that strongly invest in intangible capital tend to be strongly hurt by becoming technologically 

similar to other firms.  

As this complier analysis shows, the three groups of firms are empirically very distinct 

from each other. Yet, for all three groups of compliers, our IV analysis robustly finds causal 

impacts of technological uniqueness on firm performance: positive performance effects from more 

technological uniqueness and negative performance effects from less technological uniqueness. 

These findings are indicative of the robustness of the causal estimates.  
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5.4 Meeting the Strategic Challenge of Technological Uniqueness 

A natural question is whether increased uniqueness of a focal firm induces performance 

losses at competitors, and thereby intensifies competition or if technological uniqueness leaves the 

level of competition unaffected. As we discussed in section 2.2, there is theoretical reason to 

believe that technological uniqueness enables uniquely valuable offerings. The example we use in 

section 2.2 is Apple’s first iPhone, which was technologically unique in its use of touchscreen 

technology and its app-store platform, even if it lagged behind technologically in terms of call 

quality, message encryption etc. One strategic challenge for Apple’s competitors in 2007 was the 

question of whether they should consider the iPhone as a threat to their market share. This in turn 

depends on whether technological uniqueness leads to vertical or horizontal differentiation. 

Vertical differentiation increases the value of a firm’s product offerings for all customers, for 

example through higher quality or lower cost (Shaked and Sutton, 1982, Makadok, 2010, Makadok 

and Ross, 2013, and Costa, Cool, and Dierickx, 2013). If positive performance effects are due to 

vertical differentiation, then increased technological uniqueness by Apple reduces firm 

performance of competitors and is therefore a competitive threat. By contrast, horizontal 

differentiation generates increased value for a more narrow set of customers, while leaving others 

indifferent (Hotelling, 1929; Makadok, 2010; Makadok and Ross, 2013). Therefore, if horizontal 

differentiation explains the relationship, then more technological uniqueness by Apple will leave 

its competitors unaffected.20 In other words, horizontal differentiation tends to leave the intensity 

of competition unchanged or might even reduce it.21 

[Table 7] 

Table 7 shows that the main effect of increased technological differentiation22 at competing 

firms is to reduce sales growth and profitability at the focal firm. This is consistent with 

technological differentiation leading to more vertical differentiation and intensifying competition. 

As before, in practice, technological uniqueness is likely to affect firm performance through both, 

 
20 There is evidence that some of Apple's main competitors indeed thought of the iPhone providing horizontal 
differentiation, and therefore not a competitive threat. Former Research-in-Motion COO Larry Conlee stated about 
the iPhone that "It wasn't secure. It had rapid battery drain and a lousy [digital] keyboard." 
(https://www.wsj.com/articles/behind-the-rise-and-fall-of-blackberry-1432311912.) 
21 Makadok and Ross (2013) write: “if firms have similar efficiency, horizontal differentiation reduces competitive 
advantage by making a firm's product less appealing to the majority of the market”. 
22 Defined in section 3.2 as “value of patents obtained by industry rivals, which are outside the most common 
technology classes”. 
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vertical and horizontal product differentiation. Our results only suggest that the vertical 

differentiation results dominate and not that there are no horizontal differentiation effects. 

For purposes of easy quantitative interpretation, we have standardized the competitive 

technological differentiation shocks to have a unit standard deviation. As a result, Table 7 shows 

that a one standard deviation increase in technological differentiation at competing firms implies 

1.21 percentage point lower profitability, which is a large effect. A somewhat more surprising 

result is that competitors’ technological differentiation also leads to an increase in Tobin’s Q for 

the focal firm. A possible explanation for this result might be that investors are positively surprised 

by a wider range of technological opportunities revealed by competitors’ patenting in uncommon 

technology classes. 

The third row of Table 7 considers the possibility that under horizontal differentiation, 

more technological uniqueness might at least moderate the effects of competition (Makadok, 

2010). We find some evidence for this being the case in sales growth, but fail to find evidence for 

this hypothesis when considering profitability or ROA as dependent variable. 

5.5 Costs of Technological Uniqueness 1: Spillover-Barriers 

As discussed in our theory section, technological uniqueness may carry two forms of cost. 

Our first step in analyzing potential costs of technological uniqueness and is shown in Table 8. As 

discussed in section 3.2, our technological spillover shocks capture in-coming technological 

spillovers from patenting of other firms in patent classes that the focal firm heavily cited in the 

prior four years. 

[Table 8, Panel A] 

We find that technological spillover shocks consistently benefit the focal firm, as shown in 

the second row of Table 8. This result provides reassurance that our measurement of technological 

spillovers is correct, since the spillover shock has the theoretically correct sign even though as we 

saw in Table 7 patenting by rival firms does not necessarily imply benefits for the focal firm, but 

instead often leads to lower performance. Confounding spillover and technological differentiation 

shocks might indeed incorrectly show zero effects of patenting by rival firms on the focal firm, a 

problem we seem to have successfully addressed here. The technology spillover shock is also large 

in magnitude. As before, the spillover shock variable is standardized to have a unit standard 
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deviation for ease of interpretation. Therefore, a one standard deviation increase in the spillover 

shock implies a 3.18% higher sales growth rate, a 7.55% higher Tobin’s Q, a 1.04% higher 

profitability and a 0.76% higher ROA on an annual basis.  

At the same time, Panel A of Table 8 also shows that technologically unique firms do pay 

a cost for their uniqueness, as shown in row 3. Across the different columns, row 3 of Panel A 

shows that technologically unique firms benefit substantially less from technology spillovers. For 

example, the same one standard deviation spillover shock translates into only a 1.03% increase in 

sales growth for a firm with a one standard deviation higher technological uniqueness score 

(0.0103 = 0.0318 − 0.0215). Similarly, a firm with a one standard deviation higher 

technological uniqueness exhibits only a 2.39% increase in Tobin’s Q compared the 7.55% 

increase for the average firm (0.0239 = 0.0755 − 0.0516). The muted spillover effects also carry 

over to profitability and ROA. Throughout, the attenuation of spillover effects is sizable, but 

technologically unique firms still tend to benefit from incoming spillovers – albeit less than less 

unique firms. Importantly, all specifications in Panel A of Table 8 also include controls for the 

number of recent patents as an alternative measure of absorptive capacity, as well as the interaction 

of the number of patents with the technological spillover shocks.23 Overall these results are 

quantitatively large and qualitatively consistent with empirical results by Bloom et al. (2013), who 

considered the effect of R&D spillovers as function of technological distance across firms.  

[Table 8, Panel B] 

Panel B of Table 8 pushes the analysis of technological uniqueness as a spillover barrier further.24 

Specifically, this table analyzes whether more technologically unique firms are also citing patents 

by industry peers less, which is consistent with the view that technological uniqueness directly 

reduces learning from industry peers. Panel B of Table 8 uses two different measures of patent 

citations for this purpose: Column (1) uses number of patent citations to patents by competitors, 

while column (2) uses number of patent citations to patents in popular (or “core”) technology 

classes used by industry competitors. For both measures, the results show that a focal firm with 

 
23 We gratefully acknowledge a suggestion by a reviewer to include this as a control variable. 
24 We gratefully acknowledge a suggestion by a reviewer to run the analysis in Panel B or Table 8. 
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more unique technology tends to cite their competitor’s patents less, which supports the view that 

technological uniqueness reduces absorptive capacity for patented technology of competitors.  

5.6 Costs of Technological Uniqueness 2: Information Problem and Costs of Capital 

In this section we investigate both the mechanism and overall performance consequences 

of asymmetric information problems implied by technological uniqueness. Firm-level analyst 

coverage regressions are reported in Table 9.  

[Table 9] 

The first column shows that analyst coverage is systematically lower for technologically 

unique firms. At first this result might be surprising, especially given our performance results in 

Tables 3 and 4 which show that technological uniqueness is a strong predictor for firm performance 

and firm stock value. However, column 2 of Table 9 offers empirical support for the view that low 

analyst coverage is the consequence of high effort costs to understanding technologically unique 

firms. An increase in technological uniqueness by one standard deviation implies that on average 

analysts cover 0.14 fewer firms. Covering technologically unique firms requires high effort, which 

is especially costly for time constrained analysts.  

We push this analysis further by considering how technological uniqueness impacts the 

time until a currently uncovered firm is picked up for coverage by equity analysts in column 4 of 

Table 9. The results in the last two columns use Cox proportional hazard models, and report 

implied hazard ratios, for which a value smaller than 1 implies that the variable contributes to a 

lower risk of analyst coverage take-up, and a longer time until that take-up occurs. Consequently, 

column 4 reports that technologically unique firms are systematically less likely to be covered by 

equity analysts or take longer until they are covered. Conversely, column 5 shows that currently 

covered firms are more likely to be dropped from coverage by equity analysts, if they are more 

technologically unique.  

The analyst regressions in Table 9 confirm that it is challenging for outsiders to fully 

appreciate and correctly value technological uniqueness. An implication from these results is that 

technologically unique firms are likely to pay higher costs of capital, as investors more generally 

struggle to fully understand the profit prospects of unique technologies. Furthermore, firms that 



33 
 

are not covered or are only superficially covered by equity analysts should exhibit a 

disproportionately higher cost of capital, since there is not even analyst reports to guide investors.  

[Table 10] 

Table 10 shows that this is indeed the case. For all four measures of implied cost of capital, 

we find that technologically unique firms that lost analyst coverage have to pay higher costs of 

capital. These results are robust across different measures of cost of capital and statistically 

significant. However, the penalty in terms of cost of capital is only moderate in size. A firm with 

a one standard deviation higher technological uniqueness score pays 0.035% higher cost of capital 

on an annual basis using the Claus and Thomas (2001) cost of capital measure. Our results also 

confirm that investors systematically struggle to correctly understand the value of unique 

technologies. Of course, if investors struggle to understand the value of unique technologies, then 

competitors may as well, and therefore fail to seize opportunities to imitate technologically unique 

firms. This suggests that asymmetric information (Benner and Zenger, 2016) and causal ambiguity 

(Lippman and Rumelt, 1982) may be powerful barriers to imitating technological uniqueness. 

6. Robustness and Extensions 
In this section we provide additional robustness checks, showing that the systematic 

relation between technological uniqueness and performance is not driven by other factors, such as 

the quantity or quality of patents, product market uniqueness or survivorship bias.  

6.1 Controlling for Quantity and Quality of Patents 

As we argued in section 2, our analysis of technological uniqueness is entirely novel within 

the empirical literature on strategic management and economics. However, as we also noted in that 

section, previous work used measures of the quantity or quality of patents to proxy for 

technological resources (see Markman et al., 2004 and Hsu and Ziedonis, 2013). A natural question 

is, therefore, whether technological uniqueness captures novel performance correlations or 

whether it merely reflects the quantity or quality of patents. For example, only firms that have 

many patents might be able to generate a technologically unique patent portfolio. Or the correlation 

of technological uniqueness with firm performance might be driven by the fact that firms with 

unique patent portfolios are also firms that create more valuable patents, and it might be this value 

of patents that truly drives the correlation of technological uniqueness with firm performance.  
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To analyze the empirical value added of technological uniqueness, we control for the 

quantity of and quality of patents. To control for the quantity of patents, we measure the total 

number of patents in the same previous 3-year period we used to calculate technological 

uniqueness. To measure quality of patents, we use the total implied stock market value of patents 

in the previous 3 years, based on the patent values provided by Kogan et al. (2017).  

[Table 11] 

Table 11 shows that the correlation of technological uniqueness and firm performance is 

robust and not driven by either the quantity or quality of patents. Additionally, the total number of 

patents does not seem to be positively correlated with firm performance, but instead negatively 

correlated. This is negative correlation one might expect if firms with exploration strategies 

generate more patents, using costly resources to do so, and if there exists an exploration-

exploitation trade-off (March, 1991), whereby a successful focus technology development comes 

at the cost of less effective commercial exploitation of that technology. 

Panel B of Table 11 also highlights that technological uniqueness remains systematically 

correlated with various measures of firm performance, even if we control for the total value of 

patents in the last 3 years. As expected the total value of patents is positively correlated with 

Tobin’s Q, which should not be surprising, as the patent values are quantified using stock market 

impact of patent grants in Kogan et al. (2017). At the same time, technological uniqueness remains 

highly significant, even if we control for this value of patents.  

6.2 Controlling for Product Differentiation 

Much of our conceptual discussion of the performance effects of technological uniqueness 

used the lens of strategic positioning and the resource-based view. However, a natural question is 

whether technological uniqueness really just captures the effects of product uniqueness instead of 

the distinct effects of technological resources. To investigate this potential issue, we follow Litov 

et al. (2012) and measure product uniqueness, defined as the degree to which a firm’s vector of 

sales across business segments differs from the centroid vector of sales across business segments 

of all firms within its industry. 

[Table 12] 
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Table 12 shows that technologically unique firms outperform other industry peers, even if we 

control for product uniqueness. This is consistent with the view that technological uniqueness 

captures distinct effects from product uniqueness, which is consistent with Wernerfelt's (1984) 

argument that resource-based logic complements the traditional analysis of product market 

competition.  

6.3 Survivorship Bias 

Another potential issue is that our performance results might be driven by survivorship 

bias. Specifically, there are two distinct ways in which the set of continuing public firms might be 

sample selected. On the one hand, technologically unique firms might generally be more risky, 

which leads badly performing technologically unique firms to go into bankruptcy (see Yang, Li, 

and Kueng, 2021). If this would be the case, the fact that technologically unique firms outperform 

non-unique firms might just reflect the higher risk that technologically unique firms exhibit. On 

the other hand, even if worse performing technologically unique firms do not exit the sample 

through bankruptcy, they might exit through LBOs or acquisitions, again leaving the 

outperforming technologically unique firms as a reflection of sample selection in our data. 

We analyze both of these possible concerns by taking advantage of Compustat’s exit 

variables, that encode whether firms exit the data because of bankruptcy, LBOs or acquisitions.25 

If technologically unique firms are really riskier, we would expect that technological uniqueness 

is positively correlated with these three forms of exit.  

[Table 13] 

Table 13 shows that there is no evidence for technological uniqueness being correlated with 

either form of exit from the Compustat data.  

7. Discussion 
This paper provides systematic evidence of technological uniqueness as a valuable strategic 

resource. We document that technologically unique firms grow persistently faster and are more 

profitable than non-unique competitors, and provide evidence that higher technological uniqueness 

causes superior corporate performance. Furthermore, we provide evidence that such competitive 

 
25 The number of exit events we observe in our sample of patenting Computat firms are 23 for bankruptcy, 19 for LBO 
and 710 for acquisitions. 
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advantage is balanced by two distinct mechanisms that make technological uniqueness costly. 

First, technologically unique firms benefit less from incoming technological spillovers 

(Giustiziero et al., 2019; Bloom et al., 2013; Cohen & Levinthal, 1990). Second, technological 

uniqueness can be challenging to evaluate by investors, which implies higher costs of capital 

(Barney, 1986; Benner & Zenger, 2016; Litov et al., 2012). Together, the presence of benefits and 

costs of technological uniqueness constitute a new “Technological Uniqueness Paradox.” Beyond 

our key findings, we highlight two additional insights.  

First, our analysis reconciles the resource-based/competitive positioning and absorptive 

capacity views on how technological uniqueness shapes performance. Although the strategic 

effects of technological uniqueness dominate in the data analysis, predictions from the absorptive 

capacity view of technological uniqueness also hold, as more technologically unique firms benefit 

less from technological spillovers. As a result, these absorptive capacity effects reinforce the 

interpretation of technological uniqueness as a strategic resource, as they constitute additional 

costs of mimicking technologically unique corporations.  

Second, our results have important implications for corporate strategy, going beyond the 

principle that diversification should match resources or “core competencies” (Wernerfelt, 1984; 

Prahalad and Hamel, 1990; Peteraf, 1993). Specifically, our results suggest that firms must 

carefully manage their technology portfolios relative to product market competitors and expand 

patents towards more technologically unique areas. Additionally, our complier analysis highlights 

that firms with large initial market shares, many geographic and business segments and aggressive 

R&D and intangible investment strategies can disproportionately benefit from technological 

uniqueness, consistent with the logic of economies of scale and scope from non-rival technologies.  

  There are several limitations of our analysis, which suggest avenues for future research. 

For example, our empirical analysis focuses on the sample of publicly traded firms, which implies 

that the firms in our research tend to be very large and mature. At the same time, understanding 

technological uniqueness as a strategic resource is potentially similarly important for startups and 

private firms and the role technological uniqueness may play in their success. We pursue these 

questions in ongoing research. 

Another limitation is that our measure of technological uniqueness focuses on patented 

technologies. This ignores other types of technologies, such as intellectual property that can be 
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protected by copyrights (Heath and Mace, 2020) as well as organizational or management practices 

that can be protected by trade secrets (Bloom and Van Reenen, 2007; Guernsey, John and Litov, 

2022).  

8. Conclusion 
In this study, we provide evidence that the choice of pursuing unique and differentiated 

strategies can be a valuable proposition for a firm. We find that technologically unique firms grow 

faster, are more valuable, more profitable, and have higher ROAs. Moreover, this competitive 

advantage seems to last at least four years into the future. This result is consistent with the resource-

based view of uniqueness that classifies technological uniqueness is a strategic resource (Barney, 

1991).  

On the other hand, we also demonstrate that unique strategies can be costly for the firm in 

at least two different ways. First, technologically unique firms benefit less from technological 

spillovers of peers, acting as a spillover barrier, a result consistent with recent works by Bloom et 

al. (2013). Second, technologically unique firms may also face higher costs of equity capital as a 

direct consequence of equity analysts finding it challenging to evaluate firms whose strategies are 

more unique. We show that this higher evaluation cost is associated with (i) increases in effort cost 

imposed on the consensus analyst, (ii) reductions in the number of analysts covering the firm, and 

(iii) a delay in analyst coverage of the firm.  
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Table 1: Measurement Example for Technological Uniqueness  

CPC Description 
Firm 

Vector 
(129x1) 

Firm 
Vector 
(129x1) 

Firm 
Vector 
(129x1) 

Firm 
Vector 
(129x1) 

Industry 
Vector 
(129x1) 

    General 
Dynamics 

Lockheed 
Martin  Raytheon Orbital 

ATK 
Aerospace 

and Defense 

A61 Human Necessities: Medical or 
Veterinary Science; Hygiene 0.000 0.021 0.008 0.021 0.005 

B01 Performing Operations: Physical or 
Chemical Processes 0.000 0.019 0.002 0.010 0.006 

B21 Performing Operations: Shaping; 
Punching Metal 0.000 0.000 0.001 0.005 0.004 

B22 Performing Operations: Casting; 
Powder Metallurgy 0.000 0.009 0.002 0.000 0.005 

B64 Performing Operations: Aircraft; 
Aviation; Cosmonautics 0.000 0.029 0.022 0.036 0.084 

B82 Performing Operations: 
Nanotechnology 0.000 0.024 0.006 0.000 0.007 

C06 Chemistry; Metallurgy: Explosives; 
Matches 0.000 0.003 0.001 0.062 0.001 

F01 Mechanical Engineering: Machines or 
Engines in General 0.000 0.002 0.002 0.000 0.047 

F02 Mechanical Engineering: Lighting: 
Combustion Engines 0.000 0.010 0.006 0.047 0.038 

F41 Mechanical Engineering: Lighting: 
Weapons 0.125 0.037 0.051 0.130 0.015 

F42 Mechanical Engineering: Lighting: 
Ammunitions; Blasting 0.016 0.017 0.051 0.140 0.011 

G01 Physic: Measuring; Testing 0.031 0.111 0.140 0.057 0.079 
G02 Physic: Optics 0.016 0.045 0.048 0.005 0.018 
G06 Physic: Computing; Calculating; 

Counting 0.047 0.093 0.125 0.000 0.062 
H01 Electricity: Basic Electric Elements 0.078 0.115 0.129 0.031 0.055 
H03 Electricity: Basic Electric Circuitry 0.016 0.021 0.029 0.000 0.011 
H04 Electricity: Electric Communication 

Technique 0.328 0.070 0.111 0.000 0.050 
 Technological Uniqueness Score -0.544 -0.802 -0.740 -0.543  

 (Standardized) Technological 
Uniqueness Score  0.019 -0.876 -0.661 0.021  
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Table 2: Summary Statistics 
Variables Mean Median Std. Dev Min Max 

A: Performance Analysis 
Technology Uniqueness (standardized) -.132 -.212 0.950 -1.482 1.821 
Shift-Share IV (standardized) -.071 .445 1.084 -2.938 .77 
Sales Growth (1-year) .117 .074 0.321 -.47 1.375 
Tobin's Q 2.142 1.611 1.505 .719 7.585 
Profitability .032 .086 0.197 -.74 .283 
ROA -.022 .04 0.209 -.829 .238 
Sales ($) (log) 5.571 5.565 2.124 .737 9.973 
Sales Growth (past three years) .075 .051 0.172 -.259 .747 
Earnings Coef. of Variation 1.655 .853 2.114 .046 10.306 
# of firms in industry (GIND) 244.213 228 114.655 24 531 
Number of Shareholders (log) 3.483 3.378 1.221 1.431 6.564 
Dummy variable Segment 1 .134 0 0.340 0 1 
Dummy variable Segment 2 .516 1 0.500 0 1 
Dummy variable Segment 3 .096 0 0.295 0 1 
Dummy variable Segment 4 .254 0 0.435 0 1 
Average market share .168 .129 0.116 .037 .541 
Average HHI .061 .011 0.106 0 .457 
R&D Intensity .134 .065 0.180 0 .759 
Advertising Intensity .009 0 0.021 0 .112 
Intangible Assets .105 .036 0.144 0 .526 

B: Equity Analyst Analysis 
Adjusted Coverage 0.014 0.006 0.022 0.000 0.352 
Analyst Coverage Dummy 0.669 1.000 0.467 0.000 1.000 
Technology Uniqueness (Standardized) -0.062 -0.145 0.990 -1.476 1.836 
Analyst Effort -6.661 -6.000 4.059 -47.000 0.000 
Analyst Attention 9.206 6.000 8.833 1.000 62.000 
Assets (log) 5.919 5.749 1.866 0.718 12.718 
Market-Book 3.890 2.438 5.603 -18.844 68.953 
Intangible Assets 0.125 0.042 0.177 0.000 0.908 
Volatility 0.044 0.030 0.044 0.001 0.430 
Share Turnover (log) 14.041 14.075 0.920 9.084 17.472 
Return 0.165 0.073 0.638 -0.898 6.520 

C: Technology Shocks and Cost of Capital 
Knowledge Spillover Shock (non-standardized) 7.340 7.565 2.161 0.000 13.234 
Competitive Shock (non-standardized) 8.783 8.967 1.569 2.292 12.659 
Cost of Capital (Claus and Thomas, 2001) 0.082 0.079 0.050 0.000 0.847 
Cost of Capital (Gebhardt et al., 2001) 0.083 0.082 0.029 0.000 0.492 
Cost of Capital (Easton, 2004) 0.108 0.100 0.050 0.000 0.569 
Cost of Capital (Ohlson and Juettner-Nauroth, 
2005) 0.112 0.106 0.041 0.012 0.655 

Analyst Coverage Loss -9.693 -6.000 9.299 -62.000 -1.000 
Notes: R&D intensity and advertising intensity are defined relative to total operating expenses.  
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Table 3: Technological Uniqueness and Firm Performance 

Variable                                                            
(end of prior fiscal year) 

Sales Growth Tobin's Q Profitability ROA 
OLS OLS OLS OLS 

Models (1) (2) (3) (4) 
Technological Uniqueness 0.0231*** 0.0695*** 0.00867*** 0.00889*** 

 (0.00657) (0.0245) (0.00252) (0.00279) 
Sales (log) -0.0733*** 0.450*** -0.0352*** -0.0333*** 

 (0.00954) (0.0430) (0.00419) (0.00490) 
Sales Growth (past three years) 0.167*** -0.225*** 0.0877*** 0.0737*** 

 (0.0103) (0.0370) (0.00471) (0.00504) 
R&D intensity -0.284*** 0.437*** 0.0294*** 0.0216* 

 (0.0313) (0.0937) (0.00974) (0.0116) 
Advertising intensity -0.00200* -0.0241*** -0.00143*** -0.00114** 

 (0.00109) (0.00363) (0.000393) (0.000468) 
Intangibles/assets 0.000545 0.00371*** -0.0000932 -0.0000430 

 (0.000369) (0.00138) (0.000139) (0.000198) 
CV Earnings 0.00493 -0.209*** -0.00984 -0.0123 

 (0.0186) (0.0706) (0.00673) (0.00846) 
Number of Shareholders (log) -0.0226 -0.210*** -0.0297*** -0.0323*** 

 (0.0209) (0.0774) (0.00795) (0.00967) 
Business segments: 2 -0.0198 -0.244*** -0.0344*** -0.0360*** 

 (0.0213) (0.0779) (0.00790) (0.00979) 
Business segments: 3 0.0306 0.0467 -0.0108 -0.0266 

 (0.0523) (0.179) (0.0196) (0.0216) 
Business segments: 4 or more -0.197*** -0.185 -0.0996*** -0.0897*** 

 (0.0644) (0.191) (0.0211) (0.0242) 
Average Market Share -0.157* -0.0692 -0.149*** -0.307*** 

 (0.0831) (0.285) (0.0297) (0.0358) 
MMCI 0.352 1.301 -0.295** -0.419*** 

 (0.287) (1.485) (0.144) (0.161) 
     

Firm FE YES YES YES YES 
Industry-by-Year FE YES YES YES YES 

Region-by-Year FE YES YES YES YES 

R-squared 0.0789 0.0559 0.180 0.121 
Observations 23,050 23,050 23,050 23,050 
Notes: Technological uniqueness is measured as normalized distance from average industry patent portfolio. Sample 
is restricted to only include patenting firms. Average market share measures sales-weighted market share of firm 
across all its business segments. MMCI is sales-weighted average of industry concentration (Herfindahl index) across 
all business segments the firm is active in. Standard errors are clustered at the firm level and are reported in 
parentheses. Statistical significance levels: *: 10%, **: 5%, ***: 1%. 
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Table 4: Persistence of Competitive Advantage from Technological Uniqueness 
 Panel A: Sales Growth 

 t t+1 t+2 t+3 t+4 t+5 
Technological 
Uniqueness 0.0231*** 0.0109* 0.00681 0.00836 0.00718 0.0154*** 

 (0.00657) (0.00605) (0.00547) (0.00515) (0.00526) (0.00585) 
Controls See Table Notes 
Observations 23,050 20,244 17,960 16,165 14,672 13,322 

       
 Panel B: Tobin's Q 

  t t+1 t+2 t+3 t+4 t+5 
Technology 
Uniqueness 0.0695*** 0.0545** 0.0263 0.00695 -0.000264 0.0315 

 (0.0245) (0.0266) (0.0279) (0.0298) (0.0304) (0.0304) 
Controls See Table Notes 
Observations 23,050 20,255 17,989 16,204 14,715 13,365 

       
 Panel C: Profitability 
 t t+1 t+2 t+3 t+4 t+5 

Technology 
Uniqueness 0.00867*** 0.00726*** 0.00678** 0.00582 0.00465 0.00241 

 (0.00252) (0.00277) (0.00326) (0.00357) (0.00364) (0.00364) 
Controls See Table Notes 
Observations 23,050 20,284 18,016 16,227 14,729 13,372 

        Panel D: ROA 
 t t+1 t+2 t+3 t+4 t+5 

Technology 
Uniqueness 0.00889*** 0.00851*** 0.00764** 0.00709* 0.00469 0.000459 

 (0.00279) (0.00307) (0.00357) (0.00379) (0.00385) (0.00383) 
Controls See Table Notes 
Observations 23,050 20,284 18,016 16,227 14,729 13,372 
Notes: Controls include firm fixed effects, region-by-year fixed effects and industry-by-year fixed 
effects, initial sales, sales growth over the past 3 years, R&D intensity, advertising intensity, 
intangibles as fraction of assets, earnings coefficient of variation, log number of shareholders, separate 
dummies for firms with 2, 3 and 4 or more business segments, average market share across business 
segments and average industry concentration across business segments. Standard errors are clustered 
at the firm level and are reported in parentheses. Statistical significance levels: *: 10%, **: 5%, ***: 1%. 
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Table 5: Causal Effects of Technological Uniqueness on Firm Performance  
Panel A: Centroid IV       

 
Technological 

Uniqueness 
Sales 

Growth  Tobin's Q Profitability ROA 

OLS IV IV IV IV 
 (1) (2) (3) (4) (5) 
Technological Uniqueness  1.249*** 1.636** 0.251*** 0.190*** 

  (0.309) (0.731) (0.0747) (0.0730) 
Centroid Shift-Share 1 0.0710**     

 (0.0348)     
Centroid Shift-Share 2 0.00340     

 (0.0339)     
      

Additional Controls See Table Notes 
Fixed Effects Firm, Industry-by-Year, and Region-by-Year 
Observations 23,050 23,050 23,050 23,050 23,050 

      
Panel B: R&D Tax Credit IV 

 
Technological 

Uniqueness 
Sales 

Growth  Tobin's Q Profitability ROA 

OLS IV IV IV IV 
 (1) (2) (3) (4) (5) 
Technological Uniqueness  3.637*** 3.383*** 0.837*** 0.709*** 

  (0.675) (1.230) (0.165) (0.155) 
R&D Tax Credit  -0.160***     

 (0.0324)     
      

Additional Controls See Table Notes 
Fixed Effects Firm, Industry, and Region 
Observations 16,632 16,632 16,632 16,632 16,632 
            
Panel C: Industry Patent Expiration IV         

 
Technological 

Uniqueness 
Sales 

Growth  Tobin's Q Profitability ROA 

OLS IV IV IV IV 
 (1) (2) (3) (4) (5) 
Technological Uniqueness  1.094*** 2.049** 0.114 0.149 

  (0.339) (0.988) (0.0749) (0.0999) 
Patent Expiration IV -0.0826***     

 (0.0203)     
      

Additional Controls See Table Notes 
Fixed Effects Firm, Industry, Region, Year 
Observations 15,619 15,619 15,619 15,619 15,619 
Notes: Technological uniqueness is measured as normalized distance from average industry patent portfolio (centroid). Panel A 
instruments are the Bartik-style shift-share measures which are the product of the state-level industry's revenue-share (first and second 
lag) and industry centroid patent portfolio. Cragg-Donald F-Statistic for panel A is 11.08 and Kleibergen-Paap p-value is 0. Panel B 
instrument is the predicted R&D expenditures based on state and federal R&D tax credits. Cragg-Donald F-Statistic for panel B is 
27.85 and Kleibergen-Paap p-value is 0. Panel C instrument is a Bartik-style IV constructed using expiring patent shares for each 
technology class at the industy level. Sample is restricted to only include patenting firms. Cragg-Donald F-Statistic for panel C is 
31.37 and Kleibergen-Paap p-value is 0. Additional controls include separate dummies for 2,3,4 business segments; number of 
competitors in the same GIND industry, average market share across business segments, average industry concentration (Herfindahl) 
across business segments. Standard errors are clustered at the industry-year level for the shift-share and patent expiration IV; and 
region-year level for the R&D tax credit IV. Statistical significance levels: *: 10%, **: 5%, ***: 1%. 
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Table 6: Profiling Compliers Across Instruments 
         
Panel A: Fraction of Compliers in Sample        
 Centroid IV  R&D Tax Credit IV  Patent Expiration IV 

 (1)  (2)  (3) 
P(Ei=1) 65.63%  54.07%  68.03% 
P(Ti=1) 40.00%  14.44%  20.06% 
P(T1i-T0i) 7.50%  7.98%  11.33% 

         
Percentage compliers relative 
to all treated firms 12.32%  29.86%  38.42% 

         
Panel B: Characterizing Compliers        
 Centroid IV  R&D Tax Credit IV  Patent Expiration IV 

 (1) (2)  (3) (4)  (5) (6) 

 
P(T1i-T0i|Xi=1) P(Xi=1|T1i-T0i) 

/P(Xi=1)  
P(T1i-T0i|Xi=1) P(Xi=1|T1i-T0i) 

/P(Xi=1)  
P(T1i-T0i|Xi=1) P(Xi=1|T1i-T0i) 

/P(Xi=1) 
Many geo. segments 17.90% 2.45  12.55% 1.61  12.98% 1.13 
Many bus. segments 9.63% 1.32  -0.08% 0  12.95% 1.13 
High Market Share 10.59% 1.41  4.28% 0.53  6.45% 0.56 
High Growth 15.47% 2.06  2.16% 0.27  12.34% 1.08 
High Market Concentr. 9.76% 1.30  15.01% 1.88  -10.05% 0 
High R&D 10.85% 1.44  16.63% 2.08  9.07% 0.80 
High Advertising 11.28% 1.50  10.78% 1.35  7.45% 0.65 
High Intangible Capital 9.96% 1.32   -3.21% 0   15.92% 1.40 
Notes: Complier results are estimated using a logistic regression. For the shift-share and R&D tax credit IV, fixed effects include firm, industry and region fixed 
effects. For the patent expiration IV, fixed effects include firm, industry, region, and year. For column (1) Ti is dummy variable that is one if a firm has above-average 
technological uniqueness (the “treatment group”). For columns (2), (3) Ti is dummy variable that is one if a firm has below-average technological uniqueness. Ei is a 
dummy that is one if the instrumental variable (Centroid IV, R&D tax credit IV, Patent Expiration IV) has an above-average value. Correspondingly, P(Ti=1) is the 
fraction of treated firms; P(Zi=1) is the fraction of firms with above average instrument values; P(T1i-T0i) is fraction of "complier" firms, which are defined as 
responding to the instrument by increasing technological uniqueness; Xi is a dummy that is one for firms that have above-average values of characteristics X given in 
the rows of Panel B; P(T1i-T0i|Xi=1) is the fraction of compliers, conditional on firms with above-average characteristic X; P(Xi=1|T1i-T0i) /P(Xi=1) measures how 
much more likely compliers are to exhibit above-average characteristic X compared to average sample firms. Whenever estimates of P(Xi=1|T1i-T0i) are negative, we 
replace P(Xi=1|T1i-T0i) /P(Xi=1) with a lower bound of zero. For more details, see text and Angrist and Pischke (2009). 
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Table 7: Competitive Effects of Technological Differentiation 

Variable                                             
(end of prior fiscal year) 

Sales Growth Tobin's Q Profitability ROA 
OLS OLS OLS OLS 

  (1) (2) (3) (4) 
Technological Uniqueness 0.0281*** 0.0799*** 0.00919*** 0.0111*** 

 (0.00662) (0.0248) (0.00251) (0.00275) 
Competitive Technological 
Differentiation -0.0172 0.116** -0.0121*** -0.00385 

 (0.0107) (0.0556) (0.00435) (0.00484) 

Technological Uniqueness 
X Competitive 
Technological 
Differentiation 

0.0141** -0.00158 0.000943 0.000467 

 (0.00633) (0.0241) (0.00219) (0.00248) 
     

Additional controls see table notes 

Firm FE YES YES YES YES 
Region-by-year FE YES YES YES YES 
R-squared 0.0764 0.0681 0.199 0.133 
Observations 22,138 22,138 22,138 22,138 
Notes: Technological uniqueness is measured as normalized distance from average industry patent 
portfolio. Competitive technological differentiation shocks are defined as the value of patents by firms in 
the same industry, in uncommon technology classes. Uncommon technology classes are defined as classes 
that firms patent in less than 50% of the time. Number of patents is the number of patents granted to the 
firm in the last 3 years. Additional control variables include log number of shareholders, log sales, sales 
growth (past 3 years), coefficient of variation of earnings, number of firms in the industry, dummies for 
firms with 2,3,4+ business segments, average market share across segment industries, average Herfindahl 
index across industries of segments, R&D intensity, advertising intensity, intangibles as fraction of assets, 
number of patents granted in the last 3 years and interaction of number of patents and Competitive tech 
nological differentiation shocks. Sample is restricted to only include patenting firms. Standard errors are 
clustered at the firm level and are reported in parentheses. Statistical significance levels: *: 10%, **: 5%, 
***: 1%. 
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Table 8: Technological Uniqueness as Spillover Barrier 
Panel A: Technology Spillover Shocks  

Sales Growth Tobin's Q Profitability ROA 
OLS OLS OLS OLS 

  (1) (2) (3) (4) 
Technological Uniqueness 0.0277*** 0.0821*** 0.00905*** 0.0112***  

(0.00666) (0.0254) (0.00253) (0.00279) 
Technological Spillovers 0.0318*** 0.0755*** 0.0104*** 0.00765***  

(0.00717) (0.0236) (0.00245) (0.00279) 
Technological Uniqueness X 
Technological Spillovers -0.0215*** -0.0516*** -0.00594*** -0.00512** 

 
(0.00579) (0.0198) (0.00196) (0.00218) 

Number of Patents X Technological 
Spillovers -0.000186*** 0.000148 -0.000045*** -0.0000156 

 
(0.0000393) (0.000210) (0.0000143) (0.0000160) 

Additional Controls see table notes 
Firm FE YES YES YES YES 
Region-by-Year FE YES YES YES YES 
R-squared 0.0805 0.0667 0.201 0.134 
Observations 22,138 22,138 22,138 22,138 
Panel B: Patent Citations  

Number of Citations to Industry 
Peers 

Number of Citations to Core* 
Industry Technology Classes 

 
OLS OLS 

  (1) (2) 
Technological Uniqueness -0.0405** -0.163***  

(0.0192) (0.0190) 
Number of Patents (3-years) 0.00160*** 0.000945***  

(0.000207) (0.000203) 
Additional Controls see table notes 
Firm FE YES YES 
Region-Year FE YES YES 
Industry-Year FE YES YES 
Observations 22,292 22,292 
Notes: Technological uniqueness is measured as normalized distance from average industry patent portfolio. 
Panel A: Technology spillover shock is defined as the value of patents by other firms in technology classes the 
focal firm has cited in its own patents during the last 4 years. Panel B: Number of Citations to Industry Peers is 
the number of patent citations from the focal firm's granted patents to those patents granted to peer firms within 
the same industry. Number of Citations to Core Industry Technology Classes is the number of patent citations 
from the focal firm's granted patents to patents in the industry's core technology areas. Core technology areas by 
industry are based on the commonly assigned technology classes of patents granted to firms in the same industry 
over the past 4 years. Number of Patents are the number of granted patents to the firm in the past 3 years. 
Additional control variables in both panels include: number of patents granted to the firm in the last 3 years, log 
sales, sales growth (past 3 years), R&D intensity, advertising intensity, intangibles as fraction of assets, coefficient 
of variation of earnings, dummies for firms with 2,3,4+ business segments, average market share across segment 
industries, average Herfindahl index across industries of segments. Sample is restricted to only include patenting 
firms. Standard errors are clustered at the firm level and are reported in parentheses. Statistical significance levels: 
*: 10%, **: 5%, ***: 1%. 
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Table 9: Analyst Coverage of Technologically Unique Firms  

Variable                                                                      
(end of prior fiscal 
year) 

Adjusted 
Analyst 

Coverage 

Analyst 
Effort 

Analyst 
Attention 

Analyst 
Coverage 
Take-up 

Analyst 
Coverage 

Drop 

OLS Negative 
Binomial 

Cox Proportional Hazard 
(reported as hazard ratios) 

  (1) (2) (3) (4) (5) 
Technology 
Uniqueness -0.000604** 0.144* -0.0233* 0.880*** 1.294*** 

 (0.00025) (0.074) (0.012) 0.031 0.071 
Assets (log) 0.00316*** -0.267*** 0.311*** 1.121*** 0.467*** 

 (0.0004) (0.071) (0.014) 0.04 0.04 
Market-Book 0.0000474*** 0.00614 0.00570*** 0.99 0.95 

 (0.00002) (0.005) (0.001) 0.02 0.04 
Intangible Assets -0.000917 -0.0774 -0.0890** 1.00 0.718*** 

 (0.001) (0.225) (0.040) 0.04 0.06 
Stock Volatility 0.00801*** 0.018 0.153 1.088*** 0.95 

 (0.003) (0.951) (0.110) 0.03 0.09 
Stock Turnover (log) 0.00202*** 0.225*** 0.192*** 1.04 0.384*** 

 (0.0002) (0.063) (0.010) 0.04 0.04 
Stock Return -0.000152* -0.152*** -0.0774*** 1.079** 1.156** 

 (0.0001) (0.035) (0.006) 0.03 0.08       
Firm FE YES YES YES NO NO 
Industry-by-Year FE YES YES YES NO NO 
Region-by-Year FE YES YES YES NO NO 
R-squared 0.0557 0.004 0.061 - - 
Observations 34,866 22,181 23,707 10,325  16,563  
Notes: Analysis is run on the analyst-year level from IBES. Dependent variables are: (1) Adjusted analyst 
coverage is defined as the ratio of the number of analysts covering a particular firm, divided by the number 
of analysts covering all firms in the industry of the firm. (2) Analyst effort is defined as the negative of the 
number of other firms a particular analyst is covering in addition to the focal firm. (3) Analyst attention is 
defined as the number of analysts covering a particular firm. (4) Analyst coverage take-up is a dummy that 
is one, if any equity analyst who previously did not cover a focal firm, starts covering it eventually. (5) 
Analyst coverage drop is a dummy that us one if a focal firm, which was covered by at least one equity 
analyst, eventually stops being covered by any equity analyst. Standard errors are clustered at the firm 
level and reported in parentheses. Statistical significance levels: *: 10%, **: 5%, ***: 1%. 
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Table 10: Technological Uniqueness and Cost of Capital 

Variable                                             
(end of prior fiscal year) 

Cost of Capital 
OLS OLS OLS OLS 

  (1) (2) (3) (4) 
Technological Uniqueness 0.00157 0.00120 -0.000823 0.000604 

 (0.00162) (0.000825) (0.00137) (0.00119) 
Analyst Coverage Loss 0.000279** 0.0000937 -0.0000577 -0.0000885 

 (0.000111) (0.0000652) (0.000116) (0.0000925) 
Technological Uniqueness           
X Analyst Coverage Loss 0.000353*** 0.000253*** 0.000268*** 0.000251*** 

 (0.0000922) (0.0000538) (0.0000901) (0.0000757) 
Sales (log) 0.0343*** 0.00934*** 0.0257*** 0.0188*** 

 (0.00199) (0.00114) (0.00194) (0.00159) 
Sales Growth (past three years) -0.0119*** 0.000703 -0.00772*** -0.00536*** 

 (0.00205) (0.00119) (0.00201) (0.00152) 
R&D intensity 0.00603 -0.00581* -0.0186*** -0.00781** 

 (0.00427) (0.00338) (0.00472) (0.00371) 
Advertising intensity -0.0000534 0.000101 0.000287 0.000189 

 (0.000197) (0.000107) (0.000220) (0.000175) 
Intangibles/assets -0.0000735 -0.0000371 -0.000172** -0.000161*** 

 (0.0000674) (0.0000438) (0.0000751) (0.0000555) 
CV Earnings -0.000866 0.00220 0.000409 0.00237 

 (0.00304) (0.00176) (0.00353) (0.00247) 
Number of Shareholders (log) -0.00177 0.00196 0.00447 0.00431 

 (0.00327) (0.00205) (0.00395) (0.00277) 
Business segments: 2 0.00212 0.00316 0.00701* 0.00643** 

 (0.00373) (0.00213) (0.00405) (0.00297) 
Business segments: 3 -0.0131 -0.00742 -0.00559 -0.0139* 

 (0.00844) (0.00491) (0.0102) (0.00798) 
Business segments: 4 or more 0.0337*** 0.0124** 0.0104 0.0233** 

 (0.0100) (0.00608) (0.0109) (0.00943) 
Additional Controls See Table Notes 
Firm FE YES YES YES YES 
Industry-by-Year FE YES YES YES YES 
Region-by-Year FE YES YES YES YES 
Observations 13139 13231 12798 13034 
Notes: Dependent variables are different measures of the cost of capital: (1) uses Claus and Thomas (2001), 
(2) uses Gebhardt, Lee and Swaminathan (2001), (3) uses Easton (2004) and (4) uses Ohlson and Juettner-
Nauroth (2005). Technological uniqueness is measured as normalized distance from average industry patent 
portfolio. Sample is restricted to only include patenting firms. Additional controls include average market 
share across business segments and average industry concentration across business segments. Standard errors 
are clustered at the firm level. Statistical significance levels: *: 10%, **: 5%, ***: 1%. 
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Table 11: Controlling for Quantity and Quality of Patents 
 A: Controlling for Quantity of Patents 
Variable                                                            
(end of prior fiscal year) 

Sales Growth  Tobin's Q Profitability ROA 
OLS OLS OLS OLS 

Models (1) (2) (3) (4) 
Technological Uniqueness 0.0254*** 0.0609** 0.00889*** 0.0103*** 

 (0.00668) (0.0249) (0.00254) (0.00277) 
Number of Patents (1000) -0.0516*** -0.355*** -0.0118 -0.00395 

 (0.0180) (0.108) (0.00827) (0.00989) 
Additional controls see table notes 
Firm FE YES YES YES YES 
Industry-by-Year FE YES YES YES YES 

Region-by-Year FE YES YES YES YES 

R-squared 0.0801 0.0610 0.179 0.120 
Observations 22292 22292 22292 22292 

  
 B: Controlling for Quality of Patents 

Variable                                                            
(end of prior fiscal year) 

Sales Growth  Tobin's Q Profitability ROA 
OLS OLS OLS OLS 

Models (5) (6) (7) (8) 
Technological Uniqueness 0.0262*** 0.0693*** 0.00912*** 0.0104*** 

 (0.00667) (0.0249) (0.00254) (0.00276) 
Value of Patents ($10K) -0.0306** 0.0701 -0.00314 0.00169 

 (0.0119) (0.0526) (0.00429) (0.00435) 
Additional controls see table notes 
Firm FE YES YES YES YES 
Industry-by-Year FE YES YES YES YES 
Region-by-Year FE YES YES YES YES 
R-squared 0.0801 0.0581 0.179 0.120 
Observations 22,292 22,292 22,292 22,292 
Notes: Technological uniqueness is measured as the normalized distance of the firm’s patent portfolio 
from the average industry’s patent portfolio (centroid). The sample is restricted to only include patenting 
firms. Controls include firm fixed effects, region-by-year fixed effects and industry-by-year fixed effects, 
initial sales, sales growth over the past 3 years, R&D intensity, advertising intensity, intangibles as 
fraction of assets, earnings coefficient of variation, log number of shareholders, separate dummies for 
firms with 2, 3 and 4 or more business segments, average market share across business segments and 
average industry concentration across business segments. The sample is restricted to only include 
patenting firms. Average market share measures sales-weighted market share of firm across all its 
business segments. MMCI is sales-weighted average of industry concentration (Herfindahl index) across 
all business segments the firm is active in. Standard errors are clustered at the firm level. Statistical 
significance levels: *: 10%, **: 5%, ***: 1%. 
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Table 12: Controlling for Product Uniqueness 

Variable                                                            
(end of prior fiscal year) 

Sales 
Growth  Tobin's Q Profitability ROA 

OLS OLS OLS OLS 
Models (1) (2) (3) (4) 
Technological Uniqueness 0.0260*** 0.0824*** 0.00934*** 0.00995*** 

 (0.00729) (0.0284) (0.00286) (0.00318) 
Product Uniqueness -0.00957 -0.000258 0.0131 0.00680 

 (0.0338) (0.127) (0.0136) (0.0153) 
Sales (log) -0.0720*** 0.459*** -0.0380*** -0.0362*** 

 (0.0102) (0.0475) (0.00460) (0.00537) 
Sales Growth (past three years) 0.170*** -0.235*** 0.0946*** 0.0800*** 

 (0.0110) (0.0404) (0.00502) (0.00547) 
R&D intensity -0.293*** 0.448*** 0.0248** 0.0165 

 (0.0319) (0.0979) (0.0102) (0.0120) 
Advertising intensity -0.00165 -0.0258*** -0.00130*** -0.000974* 

 (0.00118) (0.00396) (0.000435) (0.000519) 
Intangibles/assets 0.000732* 0.00406*** -0.000138 -0.0000856 

 (0.000389) (0.00152) (0.000151) (0.000216) 
CV Earnings 0.00601 -0.211*** -0.0111 -0.0144 

 (0.0194) (0.0758) (0.00727) (0.00905) 
Number of Shareholders (log) -0.0228 -0.200** -0.0313*** -0.0353*** 

 (0.0223) (0.0840) (0.00868) (0.0105) 
Business segments: 2 -0.0265 -0.223*** -0.0374*** -0.0398*** 

 (0.0230) (0.0850) (0.00865) (0.0107) 
Business segments: 3 -0.000692 -0.0513 -0.0194 -0.0372 

 (0.0610) (0.218) (0.0227) (0.0255) 
Business segments: 4 or more -0.213*** -0.282 -0.136*** -0.125*** 

 (0.0764) (0.246) (0.0263) (0.0302) 
Additional controls see table notes 
Firm FE YES YES YES YES 
Industry-by-Year FE YES YES YES YES 

Region-by-Year FE YES YES YES YES 

R-squared 0.0792 0.0550 0.189 0.128 
Observations 20,401 20,401 20,401 20,401 
Notes: Technological uniqueness is measured as the normalized distance of the firm’s patent portfolio from 
the average industry’s patent portfolio (centroid). The sample is restricted to only include patenting firms. 
Product market uniqueness is measured as normalized distance from average industry business segment 
portfolio. The sample is restricted to only include patenting firms. Additional controls include: Average 
market share measures, which are sales-weighted market share of firm across all its business segments and 
MMCI, which is a sales-weighted average of industry concentration (Herfindahl index) across all business 
segments the firm is active in. Standard errors are clustered at the firm level. Statistical significance levels: 
*: 10%, **: 5%, ***: 1%. 
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Table 13: Exit and Survivorship Bias 

Variable                                                            
(end of prior fiscal year) 

Bankruptcy LBO Acquisition 
OLS OLS OLS 

Models (1) (2) (3) 
Technological Uniqueness 0.000475 0.000175 -0.00344 

 (0.000641) (0.000469) (0.00281) 
Sales (log) 0.000950 -0.000383 -0.0187*** 

 (0.000910) (0.000248) (0.00389) 
Sales Growth (past three years) -0.00200*** -0.000587** 0.000856 

 (0.000695) (0.000277) (0.00312) 
CV Earnings 0.00252 -0.000935 -0.0111 

 (0.00243) (0.000749) (0.00899) 
Number of Shareholders (log) 0.0000923 0.000114 0.00114* 

 (0.000118) (0.000122) (0.000671) 
Business segments: 2 0.00000404 0.0000245** 0.000978*** 

 (0.0000250) (0.0000122) (0.000253) 
Business segments: 3 0.00469** 0.000290 0.0118* 

 (0.00222) (0.000360) (0.00706) 
Business segments: 4 or more 0.00410* 0.000737 0.00725 

 (0.00232) (0.000777) (0.00841) 
MMCI 0.00312 0.000221 0.00327 

 (0.00225) (0.000595) (0.00839) 
Average Market Share 0.00107 -0.00101 0.00555 

 (0.00331) (0.00401) (0.0214) 
R&D intensity 0.00450 0.00508 -0.0216 

 (0.00503) (0.00501) (0.0288) 
Advertising intensity -0.00884 -0.00461 -0.0676*** 

 (0.00674) (0.00297) (0.0227) 
Intangibles/assets -0.0285 -0.0235 -0.0521 

 (0.0210) (0.0156) (0.119) 
Firm FE YES YES YES 
Industry-by-Year FE YES YES YES 

Region-by-Year FE YES YES YES 

R-squared 0.270 0.292 0.234 
Observations 23,050 23,050 23,050 
Notes: Technological uniqueness is measured as the normalized distance of the firm’s patent portfolio 
from the average industry’s patent portfolio (centroid). The sample is restricted to only include 
patenting firms. The sample is restricted to only include patenting firms. Average market share 
measures sales-weighted market share of firm across all its business segments. MMCI is sales-weighted 
average of industry concentration (Herfindahl index) across all business segments the firm is active in. 
Standard errors are clustered at the firm level. Statistical significance levels: *: 10%, **: 5%, ***: 1%. 
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