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Abstract

We propose a new theory of information-based voluntary social distancing in which
people’s responses to disease prevalence depend on the credibility of reported cases and
fatalities and vary locally. We embed this theory into a new pandemic prediction and
policy analysis framework that blends compartmental epidemiological/economic models
with Machine Learning. We find that lockdown effectiveness varies widely across US
States during the early phases of the COVID-19 pandemic. We find that voluntary
social distancing is higher in more informed states, and increasing information could
have substantially changed social distancing and fatalities.

Introduction

As the recent COVID-19 pandemic shows, non-pharmaceutical interventions (NPIs)
such as officially mandated social distancing policies (henceforth “lockdowns”) can play
a critical role for saving lives, especially in the early stages of a pandemic, during which
an effective vaccine is not yet available. In this context, policy makers face an important
trade-off between lives and livelihoods, as lockdowns will also reduce mobility and
related local economic activity. This paper seeks to provide a modelling framework to
quantify the trade-off between health benefits and economic costs of lockdown policies,
by combining a theory of information-based voluntary social distancing within a
compartmental model epidemiological model with a Machine Learning approach to
prediction.

Broadly, there are two approaches to modeling and forecasting pandemic dynamics
to inform policy, as evidenced by predictions in the wake of COVID-19.! First, purely
“statistical models” seek to fit a flexible functional form to data such as daily deaths.
Prominent examples include the “curve fitting” approach by the Institute of Health
Metrics and Evaluation at the University of Washington (IHME, see [2]) or by White
House economist Kevin Hassett (see [3]). Purely statistical approaches are adaptable
but also tend to be strongly driven by functional form assumptions that make these
approaches prone to overfitting. Both the approaches by the IHME and by Hassett
strongly underpredicted COVID-19 fatalities with the pandemic effectively ending
before June 2020 in the USA. At the same time, more sophisticated Machine Learning

1A full review of the entire literature on COVID-19 forecasting models is beyond the scope of this
paper, but see [1] for a literature review including 136 papers.
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approaches can be used to, reduce overfitting. A more fundamental challenge, even to
pure Machine Learning prediction models, is that these approaches are “black box”
models in nature and therefore neither allow an understanding of how and why policy
interventions will work nor enable cost-benefit analyses of lockdown policies.

Second, traditional “compartmental models” used in epidemiology ( [4—6]) have
biological foundations and can allow researchers to better understand how and why
lockdown policies work. However, early off-the shelf compartmental models of
COVID-19 strongly overpredicted infections and forecasted that up to 70% of the US
population will be infected within months in the absence of lockdowns ( [2]). This
overprediction is a direct consequence of the exponential growth of epidemics built into
the basic structure of the simplest compartmental models. A key feature missing from
these early compartmental models is voluntary social distancing, defined as the
tendency of people to reduce mobility to avoid infection even in the absence of a
lockdown ( [7]). [8] have shown that voluntary social distancing can not only explain the
“sub-exponential” growth of COVID-19 in the data, but also leads to lower estimates of
the causal impact of lockdown policies on COVID-19 fatalities. This latter result is
driven by the fact that even without lockdowns, voluntary social distancing reduces the
spread of the virus. However, the approach of [8] leaves several questions open. On the
one hand, [8] models individual mobility decisions in an “ad hoc” or “behavioral”
manner, so that it remains unclear whether and how policy can influence voluntary
social distancing. On the other hand, [8] focus on a single location (using national data
on the UK) so that they do not analyze how the effectiveness of lockdown policies varies
with local characteristics, such as local differences in voluntary social distancing.

This paper complements the existing literature through three distinct contributions.

Our first contribution is a new theoretical model of information-based voluntary social
distancing, in which people learn about infection risks from publicly available data on
new cases and fatalities. Importantly, the strength of voluntary social distancing
responses to reported local cases and fatalities is driven by the perceived credibility of
this data, which can be influenced by local governments’ information policies and which
will vary locally. In this context, our model predicts that local information policies that
produce less credible case and fatality counts lead to a lower signal-to-noise ratio of
published case and fatality counts. As a consequence, local information policies will
impact the degree of voluntary social distancing directly and the effectiveness of
lockdown policies indirectly. This insight goes well beyond the analysis of [8] and has
important policy implications. We are not aware of any other paper in the literature
providing this insight or any similar policy analysis.?

Our second contribution is methodological, in that we propose a new prediction and
policy analysis framework combining an extended compartmental epidemiological model
with Machine Learning. We embed our theory of information-based social distancing
into a rich compartmental model including a variety of often unobserved, time-varying
factors such as asymptomatic transmission, symptom-based testing and quarantining,
and time-variation in fatality rates. In addition to daily local data on new COVID-19
cases and fatalities, we calibrate the model to local, daily cellphone-based data on
mobility, which we establish as valid proxy for economic activity. Our framework can
therefore provide cost-benefit analysis for policy makers interested in the economic and
health effects lockdown policies. To increase the reliability of model forecasts, we use
ensemble learning and cross-validation, two ideas from Machine Learning. Specifically,
we re-calibrate the model for different time horizons and then use a weighted average of
these estimates, to increase the robustness of out-of-sample predictions. The ensemble
weights are then chosen via cross-validation, which minimizes the out-of-sample

2A related but distinct learning mechanism on NPIs is modeled by [9], who show that local mask
mandates can affect voluntary social distancing through changes in perceived local infection risks.
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prediction error. Using these additional steps allows us to generate more generalizable
patterns that are less likely driven by statistically noisy initial conditions. Of the 136
COVID-19 forecasting models reviewed in [1], only 3 papers use a hybrid approach
between Machine Learning and compartmental models in combination with mobility
data. All of these papers use mobility data as a predictor for new cases and fatalities
but none of these three papers allows for a feedback of case and fatality data to
mobility, the way our paper does. This feedback is a direct consequence of our theory of
information-based voluntary social distancing and is therefore a main focus of our
analysis.

Our third contribution consists of novel empirical results from the application of our
new model and methodology to the 50 US states during the early phase of COVID-19 in
2020. We find that local differences in mobility responses and other parameters imply a
wide variation of the economic efficiency of lockdown policies across states. To quantify
economic efficiency of lockdown policy (henceforth “lockdown efficiency”) we use
mobility as a proxy for economic activity and measure mobility lost if lockdowns would
have been used to save the same number of lives as have been saved through
information-based voluntary social distancing in a given state. We find that lockdown
efficiency varies widely. For example, for US states in the 25th percentile of the
lockdown efficiency distribution, lockdowns could have saved the same number of lives
as voluntary social distancing, but allowing for 75% more mobility until June 2020. In
contrast, for US states in the 75th percentile of the lockdown efficiency distribution,
using lockdowns instead of voluntary social distancing would have implied almost 20%
less economic activity. In other words, the efficiency of lockdown policies varies
substantially across states. To investigate the role of differences in local
information-based voluntary social distancing, we impose different mobility responses to
reported case and fatality counts. Our information-based voluntary social distancing
model suggests that these mobility responses can be systematically influenced by the
credibility of local government reports. To provide a reasonable counterfactual for
changes in credibility of local government reports, we compare the number of lives saved
by uniformly imposing voluntary social distancing responses in places with low
information transmission like West Virginia compared to relatively high information
transmission places like Massachusetts. Using West Virginia parameters for the whole
US implies over 240,000 additional fatalities before June 2020. In contrast, imposing
parameters from Massachusetts across all US states only saves an additional 24,000 lives
before June 2020. This shows that the existence of important cost-benefit asymmetries
of these information policies, as low-credibility information policies are much more
costly in terms of fatalities than high-credibility information policies are beneficial in
saving lives. Our quantitative evidence on how local information policies effect
pandemic outcomes, to our knowledge unique to this study, highlights the importance of
credible information due to voluntary social distancing.

1 Motivating Stylized Facts

On March 11, 2020, the World Health Organization (WHO) declared COVID-19 a
global pandemic. California was the first US state to order a state-wide lockdown on
March 19, 2020, with nearly all other states following in the next 2-3 weeks. These
lockdown orders varied from mandatory (e.g., California) to voluntary (e.g., Utah) to
none at all (e.g., Arkansas), with significant heterogeneity in the application and
severity of the orders at various levels of government (for example, Utah did not have a
mandatory lockdown, but Salt Lake City did). Irrespective of lockdown enforcement,
households might infer from lockdowns a signal about the severity of the outbreak,
which is why we think of lockdown-induced social distancing. Thus the extent to which
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citizens followed mandatory or voluntary social distancing safety measures is ultimately
an empirical question.

To quantitatively measure people’s response, we capture the extent of social
distancing by using cellphone-location based mobility data from Google.> The Google
mobility measures provide a daily-frequency comparison of mobility relative to the same
calendar day in 2019, to control for general seasonal patterns. Google provides this
mobility data for different geographic locations and different categories of points of
interest. We focus on economically relevant categories, such as mobility for work,
grocery shopping, retail shopping (including restaurants), and transportation (such as
public transit). We exclude categories such as “parks”, since outdoor disease
transmission is less common and mobility within parks has increased in some states
during COVID-19.4

Our first stylized fact is that social distancing quantitatively matters, but
lockdown-induced social distancing cannot fully explain it. This fact suggests that
individuals’ behavior needs to be explicitly modeled to capture social distancing and the
spread of COVID-19 properly. Figure 1 provides an event-study graph of mobility for
economic activities listed above (henceforth “mobility”) for all 50 US states. The
vertical red line centers the graph around the day each state imposed its lockdown, and
the vertical-axis measures mobility relative to 2019. Each grey line is the daily relative
mobility for a different US state, with West Virginia and Massachusetts in black for
comparison. Figure 1 shows that mobility has substantially fallen in all 50 states. On
average, mobility drops from above 100%, 20 days before the lockdowns, to a nadir of
60% and gradual increase to 70%, 40 days after a state lockdown. Much of the fall in
mobility, however, pre-dates the imposition of official state lockdowns. Taken together,
Figure 1 suggests mobility changed dramatically and is influenced by factors other than
official lockdown policy, see [10].

Our second stylized fact is that changes in mobility vary greatly across states to an
economically relevant extent. While all states follow a similar pattern, the differences
between state responses are noticeable in Figure 1, where the spread is 45% between
states 40 days after a state-wide lockdown. There are many potential reasons for this
heterogeneous response. Two composite reasons include the characteristics of the local
outbreak, such as the number of confirmed cases and population density, and the beliefs
of the state residents, which are influenced by information from federal and state
officials as well as different news sources. These heterogeneous mobility responses, in
turn, matter for state-level unemployment, as Figure 2 shows. Mobility is, therefore, a
useful proxy for how social distancing affected economic activities.

Our third stylized fact is that the differences in mobility between states correlate
strongly with their ex-ante beliefs. To investigate differences in mobility due to
differences in beliefs, we exploit the current political climate as an observable signal of
the beliefs about the virus. For example, it is plausible that areas with a higher
approval rating for President Trump may have a different belief about the virus than
other areas because of the messages the President has given.® We therefore use net
presidential approval ratings for President Trump in April as a measure of locally
perceived credibility of the COVID-19 threat. This correlation is shown in Figure 3.
The horizontal axis is the President’s net approval rating, and the vertical axis is the
average relative mobility until June 2020.

Figure 3, however, cannot tell us whether these differences are driven by differences
in voluntary social distancing or the strength of local lockdown measures. To provide
simple reduced-form evidence on this question, we run the following regression,

3see: https://www.google.com/covid19/mobility/

4See, for example, the mobility to parks in the Google global mobility report.

5See “Trump Says Coronavirus Cure Cannot ‘Be Worse Than the Problem Itself’,” NY Times, March
23, 2020.
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separately for each state s:
Mst = Hts,0 + Ms,1* In Os,t + Hs,2 * In Fs,t - >\t + €s.t) (1)

where m;; is mobility, In O, ; is the log of confirmed case counts, In F§ ; the log of
cumulative fatalities, A\; the coefficient estimated on a time dummy that is one during
the duration of state-wide lockdowns and e, ; is an error term. This reduced form model
provides a first pass at quantifying differences in voluntary social distancing across
states in response to public information on local case and fatality counts while
controlling for state-wide lockdown measures.® It should be noted that despite the
simplifying assumptions of this reduced form model of mobility, the median R? is around
71%. Such a high in-sample R? lends credence to this simple model, which explains the
vast majority of mobility variation. When we exclude the lockdown policy dummies,
this average R? falls from 71% to 46%, implying that lockdowns and voluntary social
distancing seem to be jointly important in understanding mobility responses.

We visualize equation (1) in Figures 4 and 5 with log of confirmed cases on the
horizontal axis and mobility on the vertical axis. We display the variation across time
within Massachusetts and West Virginia in Figure 4. Both states experience lower
mobility as log-confirmed cases increase, but Massachusetts is more responsive (given by
a steeper slope p11) and has a higher mobility in the absence of log-confirmed cases
(given by higher vertical-intercept o). We display variation across states in Figure 5,
where we use each state’s average log confirmed cases and mobility. We also add a
linear fit trend line which represents the average across states, and has negative slope
suggesting that the negative relation holds both across states and within states over
time. The trend line provides the average responsiveness and states above the trend line
are less responsive than average (e.g., Wyoming and West Virginia) and states below
the trend line are more responsive (e.g., Massachusetts and Vermont).

Equation (1) naturally separates out the initial mobility response (us) and the
mobility responses to published local confirmed case counts and fatalities (ps,1, fts,2). It
should be noted that ps 1 captures what [7] calls the “prevalence elasticity”, which is
the response of risky behavior leading to exposure, to disease prevalence. We define

“responsiveness” to case counts as the absolute value of the prevalence elasticity, or |u1].

Figures 6, 7, and 8 show that responsiveness to case counts systematically differs across
states. The responsiveness decreases with the President’s net approval rating and
increases with education attainment. Further, and perhaps surprisingly, responsiveness
|1 is positively correlated with initial mobility, Figure 8.

A potential reason that states end up with high responsiveness and high initial
mobility is that people who trust the reported cases are able to have both high mobility
when cases are low and low mobility when cases are high. Similarly, this suggests that a
lack of trust in the reported case data could lead to low initial and average mobility
because households reduce mobility out of precaution. These figures suggest that to
understand voluntary social distancing, we must understand why initial mobility (o)
and the response of mobility to information (u;) are systematically related.

This reduced form evidence motivates two questions that can only be addressed by a
structural model. First, what is driving the patterns of mobility responses ps o vs.
ls,1, Bs,2, and what do they tell us about information-based social distancing? Second,
what are the quantitative implications of the reduced form evidence for the effectiveness
of lockdown-induced as opposed to information-based social distancing in combating
COVID-197

6Note that while we do not control directly for county or city level lockdown measures, their timing
will be accounted for, if not their severity, if they are concomitant with state-wide lockdowns.
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2 Theory and Empirical Approach
2.1 Model

2.1.1 Basic structure

Our starting point is the “compartmental” disease model as in [4], with recent
extensions allowing for social distancing, see [11], [12], and [13]. The total population
can be compartmentalized according to

S+ Ei+Ii+ R+ F,+Cy =N, (2)
with the following groups in temporal order of the disease progression
e S;: Susceptible
e F;: Exposed to the virus but not yet infected and not yet infectious

e [;: Infected and infectious, i.e. possibly displaying symptoms and spreading the
virus

e R;: Resolving: fully symptomatic and moving towards recovery or death
e F}: Fatalities
e (;: ReCovered

We include three additional compartments to the basic model, which only includes
susceptible, infected, and removed, to match the COVID-19 setting. First, we include
the exposed compartment that designates people exposed to the virus, and that will
eventually get sick but are not yet showing symptoms. This compartment is consistent
with evidence on the incubation of the virus during the first week of exposure and
allows us to capture one of the benefits of proactive testing. Namely, random testing or
contact tracing can potentially find exposed people and quarantine them before they
can further spread the virus.

Second, following [12], we add the resolving, fatality, and recovered compartments to
capture fatality dynamics. The recovered compartment can later also be used to flow
back into the pool of susceptible persons if an immunity to COVID-19 turns out to be
only temporary.

2.1.2 Asymptomatic transmission

An important mechanism for the spread of COVID-19 is the possibility that
asymptomatic people are still infected and contagious. For instance, evidence from the
COVID-19 outbreak on the Diamond Princess cruise ship suggests that around 18% of
infected cases were asymptomatic, see [14]. The possibility of asymptomatic exposure
affects disease dynamics in at least two ways. First, asymptomatic infectious people
worsen contagion and accelerate the spread of the virus. Second, people infected but
never display any symptoms will also never face the risk of dying but will eventually
contribute to herd immunity. Additionally, we are very aware that the evidence from
the Diamond Princess suffers from sample selection in terms of age and other
demographics. For example, [15] document that almost 60% of passengers on the
Diamond Princess were older than 60. Therefore, instead of calibrating the probability
of being asymptomatic, we directly model asymptomatic infected people and separately
estimate the probability of an infected person to not exhibit any symptoms with the
parameter . As emphasized by [16], this parameter is also key in estimating a disease
model from available time-series data.

July 22, 2024

6,40

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258



Specifically, in the model, the possibility of an asymptomatic infection enters in the
stages after the initial exposure. Asymptomatic infections are assumed to have the same
transmission rate as symptomatic infections and will have the same duration of
infectious and resolving states, but will never result in death. While we are aware that
this is potentially a strong assumption, we also point out that it is straightforward to
relax it to allow for lower transmission rates by asymptomatic individuals.

2.1.3 Testing, Information States and Sample Selection

The difference between symptomatic and asymptomatic COVID-19 infections also
matters for the detection of cases through testing. Specifically, symptom-based testing
cannot detect asymptomatic infections and, therefore, is unable to reduce contagion
through asymptomatic people. Furthermore, since only people in infected and resolving
stages I, R; display symptoms, symptom-based testing cannot detect exposed,
pre-symptomatic cases in F;. We contrast symptom-based testing with proactive
testing, which includes random testing as well as contact-tracing. Proactive testing can
detect cases that have been exposed, as well as asymptomatic infections. We summarize
the possible information states in Figure 9. These four information states apply to the
infected and resolving stages, which we keep track of separately. In other words, for
both infected and resolving cases, there will be four sub-states, corresponding to
undetected symptomatic, detected symptomatic, detected asymptomatic, and
undetected asymptomatic cases. We also assume that conditional quarantine works
perfectly for detected cases so that people who know they tested positive for COVID-19
promptly self-quarantine.

We allow for time-varying testing rates to capture the fact that testing capabilities
across states increased over time. To fix ideas, let k € {S, P} denote either
symptom-based or proactive testing and assume that testing is initially detecting
infected people at a rate 759 and is increasing to a final level of 7, ;. We assume that
the increase in testing capability follows a smooth exponential transition with transition
rate ng, for k € {S, P}

Tht = Tho - exXPp{=1k - 1} + Tp1 - (1 —exp {1y - 1}). 3)

Our estimation strategy will then estimate the parameters 740, 7% 1, 7% for k € {S, P}
separately for each state.

2.2 Dynamic System

We formalize the ideas of asymptomatic disease transmission and sample selection
through symptom-based testing in the following dynamic system. For an overview of
the notation of the different compartments, see the flowchart in Figure 10. Following
our discussion in Section 2.1.3, we use the notation 7, j, where i € {D, U} for “detected”
and “undetected” cases and j € {S, A} for “symptomatic” and “asymptomatic” cases
respectively.

2.2.1 Exposure stage

Following the SEIR literature, we assume random matching of infectious and susceptible
people which gives the following definitions of the change in susceptible, exposed, and
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exposed detected people,

v . s,
ASit1 = B tTf (4)
IV . s,
AEt+1 = B ! : —o- Lk —TP,t'Et (5)
AEpiy1 = Tpi-Ey—0-Epg. (6)

In these first stages, people move from susceptible to exposed through contact with
infected people, and after an incubation period, they move into the infectious stage at
rate 0. Equations (4) to (6) formalize two points in particular. First, susceptible people
can only be exposed to the virus by undetected infectious people IV. In this sense,
proactive testing and quarantining will reduce the pool of undetected infectious people
and slow the disease spread. Second, proactive testing reallocates people from the group
of undetected exposed people to detected exposed people. However, since exposed
people are by definition not symptomatic yet, symptom-based testing does not change
anything at this stage.

Additionally, a key innovation of our model is the way we allow time variation in
disease transmission rates ;. Specifically, we assume that

By = Bo-my. (7)

In other words, disease transmission is driven by the way randomly matched people
interact with each other, captured by the variable m;, which denotes mobility. Lower
mobility m; corresponds to a higher degree of social distancing, which will slow the
disease spread. Importantly, we allow the effectiveness of social distancing efforts to
vary by location through the parameter v, which would also capture variances in the
efficacy of distancing due to, for example, masking efforts. A natural benchmark for
this parameter is 1y = 2, which corresponds to social distancing being proportional to
the random matching technology given in equation (4). In other words, if ) = 2 people
are randomly matched and the mobility choices of people have a proportional impact on
disease transmission.

Note that by allowing for variation in curvature v in the matching function provides
a wide range of behaviors. For example, this allows for the interpretation that the most
infectious behaviors are done first and that subsequent increases in mobility affect
disease spread less. That’s as if the curvature of the matching function is less than
quadratic (¢» < 2), since the most infectious behaviors spread the disease the most and
as mobility increases further, infectiousness of the virus increases less. If on the other
hand, the most infectious behaviors are marginal, then the curvature of infections
becomes more convex than quadratic, i.e. ¥ > 2. Larger values of ¢ will capture
increased transmission, for example, through people meeting at super-spreading events
such as choir practice, weddings, concerts, etc.”

It should also be noted that ¢ will play a dual role in our model. On the one hand,
higher values of v imply stronger negative health externalities from spreading the

disease, which we discuss in the context of individually optimal mobility choices below.

On the other hand, higher values of ¥ lead to a more aggressive spread of the virus.
This also implies that higher values of ¥ make social distancing more effective in slowing
down the disease’s spread. We will return to this issue in our discussion of results.

"It should be noted that we assume that people are equally infectious, given their behavior. In other
words, in our model differences in infectiousness across people is the result of differences in type of
behavior pursued by these people. From this perspective, ”super-spreader” individuals infect more
people because they attend super-spreader events or do not socially distance much and not because of
fixed traits. It would be relatively straightforward to generalize the matching function of individuals to
model such differences in fixed individual infectiousness.
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2.2.2 Infectious stage

After an initial incubation period, people become infected and infectious. Since at this
stage exposed people can become symptomatic, we start tracking different health and
information states, as discussed in section 3.1.3. People arrive at rate o in the infectious
stage after going through the post-exposure incubation period. Of these arrivals, a
fraction « will be asymptomatic, while a fraction 1 — o will display symptoms.
Together, this produces the equations for the change in infectious people that are
detected or undetected (denoted by a D or U superscript) and symptomatic or
asymptomatic (denoted by an S or A superscript)

A]g’_‘? = Oé'O"Et—’Y'ItU7A—TP,t'ItU7A (8)
ALY = (1-a) 0 B~y 1% —7p, - I — 15, - I® (9)
AIRY = a0 -Epy—y - IP 4 1py I (10)
Alg'_’ls = (1—0[)'U'Ep7t—’)/'ItD’S+TP7t'It[LS—‘rTS,t-ItU’S. (11)

The infectious stage also shows how testing and quarantining impact disease spread. We
assume that compliance with quarantining after an individual has tested positive for
COVID-19 is perfect and we loosen this strict interpretation in the calibrated model,
which we return in the next paragraph.

Since people can display symptoms, both proactive and symptom-based testing will
reallocate people from being undetected to detected cases. Detection of cases here
matters, since detected cases will be quarantined and therefore not contribute to the
spread of the disease in equation (4), since IV = IV A4 175 However, it should be
noted that even here, proactive and symptom-based testing differ. Symptom-based
testing only detects cases in the fraction 1 — « of the infectious population that actually
displays symptoms, so reallocates from equation (9) to equation (11). In contrast,
proactive testing additionally reallocates cases from undetected asymptomatic to
detected asymptomatic cases, i.e. from equation (8) to equation (10).

Although we assume perfect compliance with quarantining after testing positive, it
would be straightforward to extend the model to allow for imperfect quarantine
compliance. This would mainly entail allowing a fraction of positively tested people to
flow back into the pool of infectious people. We do not pursue this route here, since it is
plausible that imperfect compliance cannot be separately identified from imperfect
detection through testing. As a result, one should interpret our estimated testing
effectiveness parameters 7 as a combination of testing effectiveness and imperfect
quarantine compliance.

2.2.3 Resolving stage

In this penultimate stage, people stop being infectious at rate v and start transitioning
into the final stages at rate 6. As before, we need to keep track of four state variables
associated with the differences in case detection and case symptoms.

ARYY = 4 17 —0- R —1p, - RV (12)
ARYS = ~-17° —0-R)® —7p, - RY® — 15, RV (13)
ARDY = 4 1Pt —0-RPA 4 1p, RPA (14)
ARDY = ~y-IP® —0-RPS +7p, - RS 475, - RY® (15)

with RA = RV + RP4,
This resolving stage is important for several reasons. First, it helps us match the
time-delay from confirmed case data to fatality data by calibrating the associated
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transition rate 6. Second, testing at this stage dilutes the effectiveness of proactive and
symptom-based testing in uncovering disease spread. Recall that cases uncovered in this
late resolving stage actually have stopped being infectious, so no longer spread the
disease. Third, these cases will still be detected and therefore contribute to the publicly
disclosed case count. As a result, susceptible but uninfected people will tend to more
aggressively socially distance in response to these higher case counts.

2.2.4 Final stage

Arrival in the final stage results in one of two possible outcomes: recovery or death. To
simplify our analysis, we assume that both detected and undetected cases have an
identical chance of dying &;.® The basic idea behind this assumption is that irrespective
of detection, people might eventually check themselves into a hospital at some point in
the resolving stage and therefore get treatment. Death rates therefore measure fatality
rates net of treatment effects at the hospital. The resulting number of recovered cases is
therefore

ACiy1 = ORVA+(1-6,)-0-RVS (16)
ACpup1 = ORPA+(1-6) 60-RDS, (17)

with the number of fatalities given by
AFQ4:6VH-(R?S%aR?§). (18)

We also allow for time-varying death rates, which capture improvements in
COIVD-19 therapies and are consistent with the divergence in the data between fatality
count and confirmed case counts. The dynamic fatality rate is given by

6y = o -exp{—ns -t} + 01 - (1 —exp{—ns-t}), (19)

were we impose d; < g in our estimation.

2.2.5 Publicly Observable Information

We assume that state health officials immediately disclose detected cases to the public.

For fatality counts, we assume that all COVID-19 related deaths are correctly counted,
irrespective of whether these were actually detected cases or not. This is consistent with
the practice of adding “probable COVID-19 deaths” to the confirmed COVID-19
fatalities. The number of confirmed COVID-19 cases, in contrast, will depend on the
state-specific testing regime. For example, suppose a state only uses symptom-based
testing, as was widely the case especially in the early stages of COVID-19. Then the
observable confirmed case count is given by

O, = IP° + RPS. (20)

With symptom-based testing, only infectious and resolving people with symptoms can
actually be detected and therefore part of the observable confirmed case counts. In
contrast, proactive testing and contact tracing imply the following confirmed case count:

Oy =IP® + RPS + Ep, + IP* + RPA. (21)

In addition to detecting cases in the pool of symptomatic people, proactive testing
enables detection in the groups of exposed and asymptomatic infectious as well as
resolving cases.

8The model could easily be extended to incorporate differences in death rates of detected and
undetected cases.
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In the data, observed confirmed case counts will be a function of the mix of
symptom-based and proactive testing and will vary over time, which is why we will
estimate the associated testing capability parameters, as discussed in section 3.1.3.
These public disclosures will then feedback into disease transmission through the
voluntary social distancing decisions of individuals.

2.2.6 Voluntary Social Distancing, based on Public Information Disclosures

Our model of voluntary social distancing builds on the framework by [17] for mobility
choices in the face of risky COVID-19 infection. We analyze mobility choices from the
perspective of a representative person, who thinks that they are uninfected. Let

m¢ € [0, 1] denote mobility-based economic activities, such as going out to work, grocery
shopping, visiting restaurants and bars, etc. Mobility provides a direct flow utility of
u(my). In choosing to what extend to involve in mobility-based economic activities,
people consider two possible health states S and FE. If they stay susceptible, then the
continuation value is given by V(.S), while becoming exposed to the virus and therefore
infected and ultimately the possibility of death is captured in the value function V(FE),
with V(E) < V(S). We assume that people perceive the probability of being exposed to
the virus as a simple linear function in their mobility choices l;t - my, where l;t is the
perceived probability of being exposed to the virus per unit of mobility. The optimal
mobility choice then obeys the following Bellman equation

V(S) = max u(me) + 6 b me - V(E) + (1= by -mi) - V(S)] (22)

where ¢ denotes a discount factor. The implied first order condition for the mobility
choice is therefore 3
u'(me) = by - ¢+ [V(S) = V(E)]. (23)

In other words, people optimally weight the marginal benefit of mobility-based

economic activities against the possible continuation value loss from becoming infected.

We note that since our model will be estimated on a daily frequency, the continuation
values V(S) and V(E) are unlikely to be time-varying. Since mobility is a static policy
variable, the key to determining the extent of mobility is the expected infection
probability be.

Under the random matching in equation (4) and non-linear social interaction in
equation (7), rational expectations imply that

- =1 [TV
b= () (). (24)
Note that since people take this infection probability b; and its component (mt’ )wfl as

given when optimizing the Bellman equation (22), they ignore any externality they
impose on other people by increasing their mobility. Importantly, the strength of this
health externality is governed by the contagiousness of interactions 1. As social
interactions become more contagious (e.g., people attend more super-spreading events,
such as choir practice, concerts, weddings, etc.) 1 increases, implying more negative
health externalities from the spread of COVID-19.

A natural solution concept for infection probability b, might be Rational
Expectations or Nash equilibrium, under which people correctly forecast b;. However,
this would require people to correctly forecast the unobservable variables (m{ )wfl and

U

*
problematic for modeling expectation formation during a pandemic. First, the
non-stationarity of disease dynamics in the short run—especially in the daily frequency

). There are several reasons why this solution concept might be considered
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data we consider—is likely to prevent the convergence of simpler expectations, such as
adaptive expectations to rational expectations as in [18]. Second, [19] argues that even
in deterministic non-stationary environments, simple extrapolation forecasts can
outperform unbiased rational expectations based on the true model and might therefore
be preferred.

We model expectations formation via simple Bayesian updating. We assume every
morning, people wake up and form an expectation on infection probability if being
mobile that day, based on their prior and newspaper reports of confirmed cases and
fatalities. Focusing on Inb; as the log expected infection probability belief at time ¢, we
assume that the prior is normally distributed, N (ln(bo), 0(2)). People also consider the
combined signal

Xi=v1-In0O; — vy - In Fy, (25)

with v > 0 and v, > 0. In other words, people use the observed count of confirmed
COVID-19 cases Oy, and the total cumulative fatality count F; to predict the
probability of getting exposed to the virus per unit of mobility. This shows that the
perceived infection probability will increase in the number of observed cases Oy, as
people predict that the likelihood of running into an infected person is higher with
higher case counts. At the same time, people believe that an increase in the total
fatality count will tend to decrease the infection probability as it is not possible to run
into dead people. We assume that the combined signal X, perceived to be normally
distributed with N (In(b*),02). Note that In(b*) could be the correct log average

infection rate in the case of rational expectations, but we do not take a stand on it here.

More importantly, o2 captures the variance of noise in the signal. The higher this noise,
the less credible people think the publicly provided information is.
The posterior can therefore be written as

Inb, = Pe-Inbg+ (1 —pe)-v1 - Oy — (1 —pe)-vo-1InFy, (26)
where p. = #202 € (0,1) is the belief on the importance of noise in the data. Higher
€ 0

values of p, therefore increase the weight in the prior belief of the infection rate, while
weight on the publicly published data is reduced. On the other hand, if public
information is very credible, p. will be very low, therefore placing less weight on the
prior infection probability and making expectations more responsive to published case
and fatality counts.

For our empirical implementation, we combine this log-linear expectation formation
in equation (26) with exponential utility for the flow utility from mobility:

u(my) = ug — exp{—r - my} (27)

with k > 0. As a result, the first-order condition in equation (23) combined with
equations (27) and (26) can be rewritten to our empirical equation:

my = po+ p1 - InOy + pg - InFy — Ny (28)
the constants are given by

o pig=pc- () 1.1y (%[V(S’) - V(E)]), which captures unconditional

K
o1 . . . P . o _ 1
mobility, irrespective of public information. Note that Z* = p - (_WJO) <0, so
higher prior beliefs on infection by reduce mobility.
e p1 =—(1—pc)-“t <0 is the mobility response to confirmed case counts

e po = (1 —pc)-“2 >0 is the mobility response to cumulative fatality counts.
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Equation (28) captures the reduced form social distancing behavior. Importantly the
parameter uq is that [7] refers to as “prevalence elasticity”, that is the response of risky
behavior to prevalence. Equation (28) also helps us to understand the reduced form
regression of equation (1) better and the associated results in Figure 8. Expectation
formation parameters pe, bg, 1, and vy enter the mobility coefficients pg, p1, and po. If
preference parameters x and ¢ as well as expectation coefficients 11 and v, are similar
across states, average mobility po and mobility responses to new information p; and o
are directly informative about how much people trust the quality of public disclosures in
their states, or p.. Low information quality (or high p.) will translate into low
responsiveness (u1 and pe), while the opposite is true for high information quality (low
Pe). At the same time, low information quality (or high p.) will tend to reduce initial
mobility pg. As a result, information quality can explain the relationship between initial
mobility and prevalence elasticity in 8. This captures the idea people in states with low
information quality assume such low-quality information is a signal that news is bad,
i.e., infection probabilities are high, which is why their initial mobility pg as well as the
absolute value of their prevalence elasticity p1 is low.”

Information policies across locations will impact the parameter p., which in turn
influences the parameters pg, i1, 2. This relation suggest that we can get an idea of
how changes in information policies change the propagation of the virus, by imposing
different values of g, p1, p2, which will be the core of our quantitative analysis of
information policies.

We also add the term A; to model the effects of (temporary) lockdown-induced social
distancing. These are captured by the following time-varying variable as in [20]:

A =Xo-exp{—nr-t}+ X -(1—exp{—nL-t}), (29)

where we estimate the parameters A\; > A\g and ng from the data.

2.3 Structural Estimation

We proceed in three steps to estimate our model. In the first step, we estimate
equation (28) directly using data on mobility, observed case counts, cumulative
fatalities, and state-level lockdowns to estimate the parameters (1o, w1, p2, and Aq)
separately for each state. In our second step, we calibrate three “clinical” parameters
that capture important stages of disease progression and for which we believe there is
convincing evidence from the micro-data. We start by setting the initial virality Ry of
COVID-19 to 6 based on evidence by [21] on the spread of COVID-19 during the early
phases of the outbreak in Wuhan, China. However, it is important to note that the
model will estimate time variation in the virality R;, taking endogenous social
distancing into account,

R, = p- % (30)

Virality at time ¢ is the product of §;, which is a function of mobility m,; and the
duration of cases remaining infectious 1/, which will also be estimated. The second
calibrated parameter is the average incubation period, which we set to 5 days, so that
o = 1/5. This parameter value is consistent with the evidence in [22]. The third
calibrated parameter is the average resolution time, which we set to 12 days, so that

91t is worth noting that the optimal mobility equation (28) naturally generates mean-reversion in
voluntary social distancing over time, given the disease dynamics of our model. The reason for this
mean reversion is that in the beginning stages of an infection, the number of confirmed cases will
strongly increase, while not many people will have died from COVID-19. Therefore, early on, voluntary
social distancing will depress mobility significantly. However, as the number of fatalities grows, people
update their perceived infection risk downward, according to equation (26). This effect partially offsets
increased social distancing from growing confirmed case numbers.
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6 = 1/12, based on evidence from [23]. Of course, our specific quantitative results
depend on these calibrated numbers. Future researchers can use different calibrations
based on future studies.

In our third step, we estimate the remaining parameters using Simulated Methods of
Moments, see [24]. Specifically, we choose six testing parameters (7p0, Tp1, 7P, 75,0,
75,1, and 7g), five initial values of undetected cases (Ey, I7%, 1Y RV® and RV®)
and six parameters related to disease transmission and fatalities («, dg, 01, s, v, and
). These 17 parameters are chosen to minimize

SSE =Y (0, = O} +> (F, = FM)? + > (my —m}")?, (31)
t=1 t=1 t=1

where OM, FM and mM are model-generated time paths while Oy, F}, and m; are the
corresponding data time paths. As equation (31) shows, we match three time paths:
observed confirmed cases, cumulative fatalities, and mobility.

Our estimation is also subject to three inequality constraints:

TPo < TP (32)
TS0 < TS (33)
do > 0 (34)

and 17 variable bounds, ensuring that transition rates remain € (0,1) and initial
numbers of undetected infections are non-negative. We also utilize additional
micro-evidence to bound parameter values for several key parameters. First, we impose
an upper bound of death rates for symptomatic people of 15%, consistent with the case
fatality rate of 15%, which prevailed in Italy at the height of the COVID-19 crisis in
that country. Italy’s case fatality ratio, in turn, is the highest currently reported case
fatality ratio in the world. Second, we bound the probability of being asymptomatic,
conditional on infection, to values a € [0.05,0.8]. The lower bound corresponds to the
fraction of patients in [25] who never developed symptoms, while the upper bound
corresponds to the upper bound of estimates for a in randomized testing data in [26].
Most of the existing estimates for a comfortably fall within these bounds, such as
evidence from the Diamond Princess at a = 0.18 in [14] and « = 0.45 in [27].

We tested the identification of this Simulated Method of Moments estimator in two
ways. First, we simulated artificial time paths for a given set of parameters and made
sure that the estimation procedure converges to the correct values from random starting
points.'® Second, we cross-checked the parameter estimates with the intuitive
co-movement in the data. For example, consider several key parameters: v, v, and a.
First, contagiousness of community interactions v is in part pinned down by the
co-movement between mobility m; and confirmed cases O, because ¢ directly influences
how strongly any social distancing translates into the new infections. Second, the rate -y
determines how long people stay infectious after the virus has incubated and this
parameter estimate is driven by the co-movement of confirmed cases and fatalities. In
particular, higher values of v decelerates disease transmission, as it reduces the pool of
infected people. At the same time, higher values of v will lead to a faster transition of
cases from infectious to resolving and therefore accelerate growth in fatalities. Finally,
the probability of being asymptomatic conditional on being infected («) is strongly
driven by the shape of the number of confirmed cases. Higher values of « increase
disease transmission through asymptomatic people while also strengthening herd
immunity since a higher number of asymptomatically infected people recover without
symptoms, which in turn reduces the pool of susceptible people. Furthermore, a higher

10Results from these simulations are available upon request.
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value of « tends to decelerate fatality counts, as asymptomatic cases all eventually
recover. In other words, the shape of the time path of confirmed cases, the timing of the
peak in confirmed cases, and the co-movement of confirmed cases with fatalities will be
important for pinning down a.

In our fourth step, we improve our model’s forecast properties by using techniques
from Machine Learning. This step is important because complex and non-linear models
tend to overfit the data and perform poorly in terms of out-of-sample predictions,
see [28]. In turn, poor out-of-sample predictions indicate that model parameters do not
fit robust, generalizable patterns but instead idiosyncratic noise in the data. To improve
model generality, we use two key ideas from Machine Learning, ensemble learning and
cross-validation. Combining different models into an averaged ensemble forecasts,
stabilizes the predictions, and tends to reduce the variance of the prediction error.
Additionally, cross-validation allows us to compute optimal ensemble weights to
maximize out of sample accuracy.

For cross-validation, we reserve the last week days of data as our out-of-sample
prediction window. To estimate different models, we re-estimate the model by removing
one day at a time, going back 28 days, and use these shortened training samples as
estimation data. We then use forecasts from these 28 models to predict the time path of
confirmed cases and fatalities in the 7 days after the end of the last training sample. The
model weights are then chosen to minimize the following out-of-sample prediction error

L I 2 L I 2
%%:ZG%N—ZWOQQ+§%ﬁm—zwfﬁﬁ.(w
=1 =1 =1 =1
3 Results
3.1 Case studies of State Estimation: Massachusetts and West
Virginia

We begin with two specific estimates of states to explain more precisely how our
empirical approach works in practice. We selected the two states based primarily on
how strong the voluntary social distancing responses in response to confirmed cases
were: people in West Virginia had the lowest estimated absolute value of p;, while
Massachusetts had one of the highest. These two states will also prominently feature in
our analysis of different counterfactual information policies below.

3.1.1 State fundamentals

West Virginia is one of the poorest states and smallest states in the US, and relatedly is
not very densely populated.'! Specifically, West Virginia’s population density is around
77 persons per square mile with its largest city, Charleston, counting 45,000 residents, or
about 2.5% of the total population. Some of these fundamentals, such as lower
population count and less density, make West Virginia unlikely to strongly suffer from
COVID-19 in terms of health outcomes. On the other hand, voluntary social distancing
may be low in West Virginia because it might have a lower belief about the severity of
COVID-19; West Virginia has a net approval for President Trump of about +20% and
only 20% of the population over 25 years of age has a BA degree. COVID-19 is a
potentially serious health threat for West Virginians because 20% of its population is
over 65.

HThe summary statistics in this section are mostly based on statistics from the US Census Bureau
for 2019.
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In contrast, Massachusetts is one of the wealthiest, largest, and most densely
populated states and is therefore at a higher risk from an aggressively spreading
contagious disease, such as COVID-19. Massachusetts is home to about 6.8 million
people, around 10% of whom live in its largest city, Boston. It is the 29" most densely
populated state with approximately 839 persons per square mile. These factors likely
increase the potential threat of COVID-19 for the citizens of Massachusetts. On the
other hand, information-based social distancing may be aggressive in Massachusetts
because it has the highest fraction of college-educated persons, with 43% of the
population over 25 holding a BA degree. Additionally, Trump’s presidential approval
rating is around -28%. Based on the descriptive evidence, we should expect high social
distancing levels and low mobility in Massachusetts.

3.1.2 Progression of COVID and State government responses

COVID-19 spread to Massachusetts and West Virginia at very different times, while
state actions were taken around the same time. Massachusetts declared its first
confirmed case of COVID-19 on March 2, 2020, it took another two weeks until West
Virginia identified its first COVID-19 case on March 17, 2020. West Virginia was the
last state to announce the confirmation of a COVID case publicly. While two weeks
seems like a small-time difference, it should be noted that both disease spread and our
empirical analysis are conducted at a daily frequency, which implied a substantial
difference in timing. Though the arrival of COVID-19 in both states was different, both
states imposed state-wide lockdowns on March 24, 2020. This relative delay of the state
response in West Virginia indicates a more hesitant approach to lockdowns. It is also
mirrored in the fact that West Virginia’s reopening started on May 4, approximately
two weeks before partial reopening started in Massachusetts.

With these differences in mind, our mobility measures from Section 1, can help us
understand how quantitatively different social distancing was in these two states.
Overall, average mobility declined by 31% relative to 2019 in Massachusetts as
compared to an 11% average mobility decline in West Virginia. These raw differences
could be driven by differences in state lockdown policies as compared to voluntary social
distancing. Therefore, using our estimates from equation (1), we can calculate the
average effectiveness of lockdowns on mobility, or the term A;. This term turns out to
be remarkably similar between the two states. While in place in Massachusetts, our
estimates suggest that the lockdown reduced mobility by 12% on each day relative to
2019. In comparison, the West Virginia lockdown reduced mobility by 13% on each day.
These effects of lockdowns on mobility each day are close to the median effect of 14%
across states.'? However, the lockdown was in place in Massachusetts for about two
weeks longer. This longer duration might at least, in part, contribute to a higher overall
effect of lockdowns on the spread of the virus.

We now move to the comparison of the raw data in terms of health outcomes. For
comparison purposes, we report population-adjusted cumulative fatalities “per 100,000”,

which is calculated as lelinber of fatalities 100, 000. In terms of raw fatality
ate population

outcomes, Massachusetts seems to have performed much worse with 188 deaths per
100,000, while West Virginia has performed relatively well with five deaths per 100,000
until the end of June. Of course, these outcomes by themselves are likely to be driven
by the fact that Massachusetts is more densely populated, as discussed in Section 3.1.1.
Therefore, to evaluate the effectiveness of lockdown policies and voluntary social
distancing, we now move to model estimation.

12The 95" percentile of the state lockdown effects are 20% mobility reduction each day.
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3.1.3 Massachusetts and West Virginia: Model Estimates and Social
Distancing Effectiveness

The panels in Figure 11 show model estimates for West Virginia and Massachusetts.
The two vertical lines make different dates for including of the training sample. Between
the first and the second vertical line, one day is added at a time to the estimation
sample and the model is re-estimated on the extended training sample. Past the second
line are the observations that constitute the test sample for cross-validation of the
ensemble model (see equation (35)). The various dashed lines then show predictions for
the first five and the last five models. Our optimal ensemble model estimates are
displayed as a solid blue line. For comparison purposes, we also present a naive
ensemble in red dashed lines. As the blue lines show, our ensemble estimator
successfully predicts the rising number of cases and cumulative fatalities. These figures
provide examples for the optimal ensemble, successfully estimating generalizable
patterns that go beyond what even a naive ensemble would find. However, note that the
model performs somewhat worse in terms of fitting mobility changes, though the
R-squared for both states is still around 70-75%.

Once we estimated the optimal ensemble model for both West Virginia and
Massachusetts, we turn to the calculation of the causal effects of state lockdowns and
voluntary social distancing. The panels in Figure 12 show the qualitative results. In
these panels, the blue lines correspond to the optimal ensemble model estimates from
Figure 11. Of course, there is uncertainty with these hypothetical conditions, and
uncertainty is driven both by model assumptions and calibrations. We contrast this
estimated and predicted path with two counterfactuals from the model. First, the grey
dashed line is the infection, fatality, and mobility time path without state lockdowns
but with voluntary social distancing. Second, the black dotted line displays the same
time paths for a counterfactual without voluntary social distancing but with state
lockdowns. As the counterfactual panels show, in both West Virginia and
Massachusetts, the effect of voluntary social distancing is more important than the

impact of state lockdowns: in general, the dotted lines are above the dashed grey lines.

To put these plots in perspective, consider the results in Table 1, which reports
results per 100,000. The table shows that state lockdowns were far more effective in
Massachusetts than in West Virginia in saving lives. Importantly, even if one adjusts for
the fact that the lockdown in Massachusetts had a longer duration than in West
Virginia, the state lockdown effectiveness is still twice as high in Massachusetts than in
West Virginia. At first, this might seem puzzling, since our estimates of A\; or the effect
of lockdowns on mobility were quite similar between the two states. However, recall
from equation (7) that how strongly mobility changes depend on the contagiousness of
interactions ©. And these parameters differ substantially in our model estimates. For
Massachusetts, we estimate an averaged value of ¥ = 2.5 across models used in the
optimal ensemble. This parameter suggests higher effectiveness of social distancing on
reducing disease transmission than in the random matching benchmark of ¢ = 2. In
contrast, 1» = 1.55 for West Virginia suggests lower effectiveness of social distancing
measures there.

These contagiousness differences also magnify already substantial differences in
voluntary social distancing. Table 1 shows that voluntary social distancing was more
than twice as effective in saving lives in Massachusetts as in West Virginia.

3.2 Key Parameter Estimates for All States

We now move to a more general discussion of our estimation results across states. In
this section, we focus on a handful of parameters that prominently featured in the
policy discussions around COVID-19. However, before turning to the results, we want
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to point out an important caveat. We will present “ensemble averages” of parameters,
defined as weighted values of parameters for all models in the optimal ensemble, where
weights reflect the optimal ensemble weight. These ensemble averages are meant as an
easy way to indicate what models estimate. However, it is unlikely that these estimates
themselves would exactly give the ensemble models’ estimated paths since all these
models are highly non-linear. For the ensemble-averaged parameters, we will also
mainly focus on the median values, but the reader should be aware that extreme values
that are estimated quantitatively matter in the non-linear models considered here.

Turning to Table 2, we point out that average virality R, differs greatly from the
calibrated initial virality estimate of six. These differences are, of course, driven by
endogenous social distancing. Importantly, the median ensemble-average value is 3.86,
which is far lower than six. On the other hand, it is also worth noting that none of our
estimates fall below one, which means that no state has managed to push virality below
the net infection growth threshold persistently.

Our model also provides estimates for the fatality rates due to COVID-19 in Table 3.

This death rate should be interpreted as the death rate for symptomatic people since
only symptomatic people can die in our model. The model estimates that in the median
state, death rates for symptomatic people dropped substantially through the estimation
period for the median state. This drop implies an impressive improvement in learning to
treat the disease.

The model estimates the probability of being asymptomatic, conditional on being
infected to be around 12% for the median state. That is only a bit lower than the 18%
estimated by [14] for the Diamond Princess. However, it should be noted that estimates
for the a parameter vary from our lower bound of 5% to around 60%, which is still
comfortably below our upper bound of 80%.

We note that Ry and the infected death rate are highly dependent on many factors,
including the local geography of social networks, demographics, and culture. We also
note that models in the literature have produced different results based on whether they

were aggregated (equation-based) or distributed models (e.g., individual or agent-based).

These caveats should be considered when interpreting our results.

3.3 The Importance of Information Policy

Table 4 presents results from estimating the effectiveness of different types of social
distancing for all states, using the same methodology as in Section 3.1.3. It shows that
in terms of total numbers of lives saved, voluntary social distancing was almost three
times more effective than state lockdowns for the median state. Effectiveness even
increases if we consider population-adjusted lives saved, which implies that voluntary
social distancing is 4.5 times more effective. These results suggest that information
policy and health advisories, which focus public attention on confirmed cases and
fatalities, can be an important tool for policymakers. Indeed, beyond effectiveness in
saving lives, information policy tools are attractive because they facilitate private
initiative in implementing social distancing. Of course, a major drawback of this
argument is that such private initiative can be insufficient in the presence of very strong
health externalities, a point to which we return below.

Several factors drive the result that information-based voluntary social distancing
has been more effective in saving lives than state lockdown. One of the key factors is
that voluntary social distancing tended to sharply depress mobility early on, consistent
with the evidence by [10], [29], and Figure 1. In this context, it should be noted that
the earlier social distancing is, the more effective it is in reducing the spread of the
disease. At the same time, state lockdowns tended to be weeks after the first confirmed
cases. Furthermore, most lockdowns in Spring 2020 tend to be limited in their duration,
while information-based voluntary social distancing continues beyond the end of
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lockdowns and likely encompasses a broader range of behaviors, such as wearing a mask,
washing hands, or avoiding specific risky social situations, than could be effectively
mandated by government

Beyond the characteristics of lockdown policies, it is likely that state fundamentals,
such as population density, influence the effectiveness of voluntary social distancing.
Figure 13 investigates this conjecture, by showing the correlations of voluntary social
distancing effectiveness and population density, controlling for population. It shows that
states with higher density tend to save more lives through information-based voluntary
social distancing. This relationship is intuitive, as staying at home prevents people from
spreading COVID-19 more in dense cities than rural areas. However, it should be noted
that this relationship emerges from our model estimates despite the fact that we did not
use any data on population density to estimate the model. It therefore serves as an
additional “out-of-sample” prediction that confirms that our model produces
generalizable regularities.

Figure 14 investigates the relationship between the average of the time-varying
virality R; and the contagiousness of interactions v, following our discussion in
Section 3.1.3. Interestingly, we find a non-monotonic relation between these two
variables. For low values of v, increases in ¢ reduce average virality. However, past a
value of 3, higher contagiousness of interactions 1 is correlated with higher virality.
This pattern makes sense if we consider average virality R; to be the balance of two
opposing forces, as R; = M In states with relatively low values of v, every
reduction in mobility m; implies that infection rates can be more effectively reduced.
However, as 1 increases beyond 3, the effect that even little amounts of mobility m; can
quickly spread the disease dominates. This explains why for very high values of 1,

virality is, on average, very high.

3.4 Externalities and the Efficiency of Social Distancing

Our results can also be used to evaluate the relative economic costs of lockdowns as
opposed to voluntary social distancing. To accomplish this, we calculate the mobility
lost if lockdowns would have been used to save the same number of lives as voluntary
social distancing. In other words, for each state, we calculate

_ lives saved by voluntary soc. dist. mobility lost due to lockdown

&=

lives saved by lockdown mobility cost through voluntary soc. dis(t. 7)

36
where £ measures how much more in terms of lost mobility it would have cost to save
the same number of lives through lockdowns instead of voluntary social distancing. Our
baseline results for £ across states are reported in the last column in Table 4. For the
median state, the answer is —24.2%, suggesting that lockdowns would have avoided
nearly a quarter of the economic costs associated with voluntary social distancing.
However, it should be noted that there is a fair amount of variation in the efficiency of
lockdowns. Indeed, as Table 4 shows, for some states, voluntary social distancing is far
more efficient than lockdowns and implies that lockdowns would have cost 69.36% more
in terms of lost mobility to save the same number of lives as voluntary social distancing
has. As a consequence, lockdowns might be considered a targeted rather than general
policy option over information policies. However, if blanket policies are the only option,
then we find they are still economically beneficial on average.

A key factor influencing the relative efficiency of lockdowns as opposed to voluntary
social distancing is the contagiousness of interactions . Recall from equation (24) that
1) governs the strength of negative health externalities from mobility. Under voluntary
social distancing, stronger externalities implied by higher 1/ lead to more exposure and,
ultimately, more infections in the future. More infections, in turn, depress mobility via
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equation (28). As a result, higher contagiousness of interactions leads to more disease
spread under voluntary social distancing, leading to stronger social distancing. In
contrast, imposing lockdowns reduces infections in the first place, so that subsequent
mobility can be higher as the number of confirmed cases is lower. Evidence for this
mechanism is presented in Figure 16. The y-axis shows measures of ¢ in percentage
points, with lower values capturing higher efficiency of state lockdowns. The x-axis
captures the contagiousness of the interaction parameter . Figure 16 shows that states
with higher estimates for ¢ and therefore stronger health externalities exhibit higher
relative efficiency of state lockdowns compared to voluntary social distancing.

3.5 Information Policy Counterfactuals

The results in the previous section raise the question of how much changes in
information policy—which influence the parameters ug, @1, and ps—matter for saving
lives during COVID-19. This approach for using changes in pg, 1, and s as proxies
for changes in information policies follows from our theoretical discussion in section
3.2.6, where we showed that changes in information quality p. lead to changes in

1o, 11, 2. To discipline this quantitative exercise, we return to the two states of West
Virginia and Massachusetts. Our estimates of coefficients ug, p1, and ps are consistent
with the view that information quality in West Virginia is poor, while people have a
higher prior on the base risk of infection. In contrast, the g, @1, and ps estimates for
Massachusetts suggest that people believe information quality to be high, while their
priors about base infection rates are low.

In order to contrast differences in information quality, expectation formation, and
voluntary social distancing, we impose either West Virginia’s or Massachusetts’ mobility
coefficients g, p1, and po on all states. Then we recalculate the effectiveness of social
distancing by taking the difference between lives saved by voluntary social distancing
with the alternative uniform parameters pg, 111, and ps as opposed to our baseline
estimates with heterogeneous information quality.

We report our results in Table 5. The entries capture the sum of lives saved across
all states. As the first entry shows, more than 246,000 additional people would have
died if people in all states followed the same expectation formation process as people in
West Virginia. This number is a substantial counterfactual increase in fatalities,
compared to around 100,000 deaths by the end of June 2020. In contrast, 26,071 more
lives would have been saved if everyone trusted published case counts as much as people
in Massachusetts. Imposing uniform mobility responses underlines the role played by
different coefficients. Recall from Figure 8 that Massachusetts had a very high value for
1o but also very high absolute values for p; and po. While the higher value of p; tends
to increase the number of lives saved across states, the higher value of pg tends to
reduce it. Therefore, the worst combination is Massachusetts’s high unconditional
mobility pg, which might reflect more optimism about the base infection risk with West
Virginia’s weak responsiveness to published case and fatality counts u; and po. This
combination would have implied an additional 1.6 million fatalities. In contrast, the
best combination of pg, p1, and pe would have saved an additional 116,589 people.

An important finding of Table 5 is that there exists significant asymmetry in the
importance of bad and good information policies: bad information policies harm much
more than good information policies help. Figure 15 illustrates what drives this
asymmetry. Specifically, it displays the distribution of lives saved for the uniform West

Virginia expectations in red, while the uniform Massachusetts expectations are in blue.

This figure shows that the additional lives lost due to low-quality information are much
more concentrated at very low values. In other words, low-quality information
disproportionately harms states that already have a bad outbreak. In contrast, the
effects of high-quality information are much more heterogeneous, harming some states
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while helping other states.

4 Discussion and Contribution to the Literature

We develop a model of information-based voluntary social distancing that is rich enough
to quantify the effect of credible local information on case and fatality counts. Our
model incorporates the insights highlighted by empirical studies that document, but do
not model, the impact of beliefs and the information environment on social distancing
( [17], [30], [31]). Our approach extends work by [8], who model social distancing with a
compartmental model, by allowing social distancing to be endogenous to the
information environment. Our extension is critical to understand what policies or other
determinants can influence voluntary social distancing.

This paper also contributes to a small literature of hybrid approaches between
Machine Learning and traditional compartmental epidemiological models (henceforth
“hybrid approach”). Some hybrid approaches such as [32] and [33] use very basic
compartmental models, which do not allow for voluntary social distancing at all. Based
on the literature review of 136 COVID-19 forecasting models in [1], we identified 3
studies that use both a hybrid approach and daily mobility data: [34], [35] and [36]. Our
paper extends these papers by also allowing for a feedback from cases and fatalities to
mobility through an information channel. To the best of our knowledge, ours is
therefore the only forecasting and policy model that utilizes a hybrid approach while
allowing for a feedback of local information on cases and fatalities to mobility.

Another hybrid approach we are aware of is pursued by [37], who combine an
epidemiology-founded version of Bayes’ Law with Machine Learning-based
infection-prediction using symptoms to provide a sample-selection corrected measure of
the active prevalence of COVID-19. However, their approach does not allow for
counterfactual analysis of NPIs, such as lockdown policies.

We believe that our combination of a hybrid model with an information-based
theory of voluntary social distancing has three unique advantages for policy makers
seeking to manage the early stages of future pandemics. First, the incorporation of
Machine Learning avoids over-fitting and provides more reliable short-run predictions
than either purely statistical models or traditional compartmental models with
unmitigated exponential growth. Second, our framework provides realistic estimates of
the causal effects of lockdowns, taking into account that even without lockdowns people
would voluntarily socially distance. Crucially, the extent of voluntary social distancing
and therefore the causal estimate of lockdowns depend in our model on local parameters
including the credibility of locally reported data. Any policy analysis ignoring how
voluntary social distancing differs locally is likely to provide biased estimates of the
economic and health effects of lockdown policies. Third, our framework allows for a
credible cost-benefit analysis of the trade-off between lives and livelihoods when
deploying lockdown policies in early phases of a pandemic.

5 Conclusion

This paper has developed a new methodology to evaluate the effectiveness of social
distancing during COVID-19. To achieve this, we combine an extended compartmental
model of a pandemic with Machine Learning and a new theory of information-based
voluntary social distancing.

Qualitatively, the model shows that information-based voluntary social distancing
was an important feature of the COVID-19 policy response. Quantitatively, our
calibrated model suggests the size of this effect may be large enough to be important.
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Of course, the exact numbers depend on specific calibrations and other model
assumptions. The model we provide is tractable enough for future researchers to use
and update with different calibrations or model assumptions.

Future research can use our model to analyze at least three additional
policy-relevant questions. First, how do different policy alternatives, such as (1)
proactive testing and quarantining, (2) increased symptom-based testing, and (3) efforts
to increase public attention to published case counts, quantitatively differ in slowing the
spread of pandemics like COVID-197 Second, what are the economic implications of
these different non-pharmaceutical interventions? Our framework already quantified the
reduction in mobility-based economic activities, such as going to work and grocery
shopping, but we have not directly translated these mobility changes into
unemployment or GDP numbers (although doing so, using regularities such as Okun’s
Law is straightforward). Third, are there important policy complementarities between
different non-pharmaceutical interventions? For example, more aggressive testing might
increase case counts, while governments can also influence the degree of voluntary social
distancing by focusing the public’s attention. Might a combination of these two policies
disproportionately slow the spread of the virus down? These questions can be addressed
by the framework developed in this paper, and we leave them for future research.
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Table 1. Lives saved by social distancing

West Virginia Massachusetts
State lockdown 20.5 61.4
State lockdown * 20.5 42.4
(same duration)
Voluntary Social Distancing 51.8 133.7

Note: Entries display population-adjusted number lives saved (per 100,000). It is calculated as
Number of lives saved
State population
cumulative fatalities until end of June and estimated cumulative fatalities, both calculated from the optimal ensemble model

(31) and (35).
! Lockdown duration is normalized by adjusting lives saved for MA by (38 days/55 days)

x 100, 000, where ”Number of lives saved” is calculated as difference between counterfactual

Table 2. Ensemble-weighted parameters

Ry ! Ry TRO TR, NR 75,0 TS,1 ns
90%" Perc. 6.00 6.66 0.03 0.30 0.02 0.02 0.30 0.03
75" Perc. 6.00 5.12 0.00 0.20 0.00 0.00 0.29 0.02
50" Perc. 6.00 3.86 0.00 0.09 0.00 0.00 0.20 0.01
25" Perc. 6.00 3.13 0.00 0.04 0.00 0.00 0.07 0.00
10" Perc. 6.00 2.66 0.00 0.01 0.00 0.00 0.02 0.00
Note: Estimates of parameters from model (31), weighted with optimal ensemble weights (35).

1. Calibrated parameter, using [21]
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Table 3. Ensemble-weighted parameters: Virality and testing
L do 01 Nd « P ~y 01 o2
90" Perc.  0.40 0.14 0.0031 0.18 0.58 5.96 0.41 0.083 0.2
75th Perc.  0.34  0.13 0.001 0.075 036 4.17 0.15 0.083 0.2
501" Perc.  0.32  0.104 0.000031 0.036 0.12 253 0.083 0.083 0.2
25" Perc.  0.31  0.034 0.0 0.025 0.051 191 0.049 0.083 0.2
10" Perc.  0.26  0.014 0.0 0.017 0.05 1.06 0.036 0.083 0.2
Notes: Estimates of parameters from model (31), weighted with optimal ensemble weights (35).

1. Calibrated parameter using [22)]

2; Calibrated parameter using [23]

Table 4. Estimates of social distancing effectiveness

Lockdown Voluntary Social Distancing Econ. cost equiv.

Lives saved Mobility lost Lives saved Mobility lost Mobility lost given

Pct.  Total Per 100K Cum. Total  Per 100K Cum. equivalent fatality
90" 78.43 6021.87 8.26 314.86  23071.44 29.61 69.36%
75t 27.93 1824.59 6.57 139.4 7283.34 20.02 19.04%
50t" 7.54 373.13 3.66 33.92 953.56 14.75 -24.18%
25th 2.66 60.31 1.95 5.73 222.62 9.12 -72.66%
10th 0 0 0 1.32 9.82 7.38 -89.43

Notes: First column indicates percentile of across state estimates. Estimates are based on difference between actual fatalities
or mobility and counterfactual fatalities or mobility without lockdowns (colums 2-4) or without voluntary social distancing
(columns 5-7). The last column calculates the percentage mobility loss if lockdowns are used to save the same number of lives
as voluntary social distancing in the same state percentile.

Table 5. Lives saved by uniform mobility responses for different mobility parameters
M1, U2
\\AY MA
po WV 246,635 116,589
MA 1,664,915 26,071

Notes: Number of lives saved relative to estimates mobility parameters pg, i1, i, with negative numbers indicating higher
fatalities. Entries are calculated are predicted fatalities under uniform mobility parameters, based on responses in West
Virginia (WV) or Massachusetts (MA) minus fatalities under estimated current responses. Entries are cumulative until end of
June 2020.

July 22, 2024 23/40



120%
1

West Virginia

94%
|

80%

Massachusetts

Relative Mobility
Spring 2020/Spring 2019 (Google)

60%
|

40% 49%

T T I T
-40 -20 0 20 40 60
Days Before and After State-wide Lockdown

Fig 1. Voluntary social distancing before effective date of state-wide lockdown

Notes:  This figure uses cellphone-location based mobility data from Google to quantitatively measure people’s response (see:
https://www.google.com/covid19/mobility/). The Google mobility measures provide a daily-frequency comparison of mobility relative to the same
calendar day in 2019, to control for general seasonal patterns. A value of 70% is interpreted as mobility on this day in 2020 is 70% the mobility on
this day in 2019. We focus on economically relevant categories, such as mobility for work, grocery shopping, retail shopping (including restaurants),
and transportation (such as public transit) and exclude categories such as “parks,” since outdoor disease transmission is less common. The mobility
data is centered around the day a state-wide lockdown is imposed (given by the bold red line). To demonstrate heterogeneity across states, we
denote the difference in mobility 40 days after a state-wide lockdown (thin blue line, with dashed horizontal lines that denote the range). The
mobility data for two states, Massachusetts and West Virginia, are given in black and labeled.
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Fig 2. Mobility and unemployment rates across states (April, 2020)

Notes:  This figure uses cellphone-location based mobility data from Google to quantitatively measure people’s response (see:
https://www.google.com/covid19/mobility/). The Google mobility measures provide a daily-frequency comparison of mobility relative to the same
calendar day in 2019, to control for general seasonal patterns. A value of 70% is interpreted as mobility on this day in 2020 is 70% the mobility
on this day in 2019. Each value of the x-axis is the average of the daily data for the month of April 2020 (relative to April 2019). We focus on
economically relevant categories, such as mobility for work, grocery shopping, retail shopping (including restaurants), and transportation (such as
public transit) and exclude categories such as “parks,” since outdoor disease transmission is less common. State unemployment data comes from
the Bureau of Labor Statistics (BLS). The fit trendline has the equation y = —21.55 % x + 24.74, with Adjusted R? = 0.18 (estimate S.E.= 6.21,
P-value=0.001).
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Fig 3. Mobility and President’s approval rating across states

Notes:  This figure uses cellphone-location based mobility data from Google to quantitatively measure people’s response (see:
https://www.google.com/covid19/mobility/). The Google mobility measures provide a daily-frequency comparison of mobility relative to the
same calendar day in 2019, to control for general seasonal patterns. A value of 70% is interpreted as mobility on this day in 2020 is 70% the
mobility on this day in 2019. Each value of the y-axis is the average of the daily data from February to June 2020. We focus on economically
relevant categories, such as mobility for work, grocery shopping, retail shopping (including restaurants), and transportation (such as public transit)
and exclude categories such as “parks,” since outdoor disease transmission is less common. We use approval ratings for President Trump from
FiveThirtyEight (https://github.com/fivethirtyeight/data/tree/master/trump-approval-ratings) averaged over the spring of 2020 as of May 2020.
The fit trendline has the equation y = 0.39 * x 4 79.5, with Adjusted R? = 0.64 (estimate S.E.= 0.0004, P-value<0.001).
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Fig 4. Mobility and log confirmed cases across time in MA and WV

Notes:  This figure uses cellphone-location based mobility data from Google to quantitatively measure people’s response (see:
https://www.google.com/covid19/mobility/). The Google mobility measures provide a daily-frequency comparison of mobility relative to the same
calendar day in 2019, to control for general seasonal patterns. A value of 70% is interpreted as mobility on this day in 2020 is 70% the mobility on
this day in 2019. We focus on economically relevant categories, such as mobility for work, grocery shopping, retail shopping (including restaurants),
and transportation (such as public transit) and exclude categories such as “parks,” since outdoor disease transmission is less common. Each data
point is a different day in April 2020. The fit trendline of West Virginia has the equation y = —0.03 * = + 0.87, with Adjusted R? = 0.54 (estimate
S.E. = 0.01, P-value<0.001). The fit trendline of Massachusetts has the equation y = —0.07 * = + 1.10, with Adjusted R? = 0.85 (estimate S.E. =
0.01, P-value<0.001).
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Fig 5. Mobility and log confirmed cases across states
Notes:  This figure uses cellphone-location based mobility data from Google to quantitatively measure people’s response (see:
https://www.google.com/covid19/mobility/). The Google mobility measures provide a daily-frequency comparison of mobility relative to the same
calendar day in 2019, to control for general seasonal patterns. A value of 70% is interpreted as mobility on this day in 2020 is 70% the mobility on
this day in 2019. Each data point is an average of daily data from Feburary to June 2020. We focus on economically relevant categories, such as
mobility for work, grocery shopping, retail shopping (including restaurants), and transportation (such as public transit) and exclude categories such
s “parks,” since outdoor disease transmission is less common. The fit trendline has the equation y = —3.01 % x + 101.71, with Adjusted R2 = 0.23
(estimate S.E. = 0.76, P-value<0.001).
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Fig 6. Mobility responsiveness to confirmed cases and President’s approval rating

Notes: The vertical axis

pendent variable from equation (1). The horizontal

is the state-specific estimate of the coefficient pu;

of log confirmed cases with mobility as the de-
axis is the approval rating for the President from FiveThirtyEight

(https://github.com/fivethirtyeight /data/tree/master/trump-approval-ratings) averaged over the spring of 2020 as of May 2020. The fit trendline
has the equation y = —0.0007 * 2 + 0.09, with Adjusted R? = 0.08 (estimate S.E. = 0.0003, P-value=0.027).
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Fig 7. Mobility responsiveness to confirmed cases and Educational Attainment

Notes: The vertical axis is the state-specific estimate of the coefficient p1 of log confirmed cases with mobility as the dependent variable from
equation (1). The horizontal axis is the Percent of Population Over 25 with College Degreed from the American Community Survey (2018). The fit
trendline has the equation y = 0.004 * = + 0.02, with Adjusted R? = 0.09 (estimate S.E.= 0.002, P-value=0.021).
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Fig 8. Mobility responsiveness to confirmed cases and initial mobility

Notes: The vertical axis is the state-specific estimate of responsiveness of mobility in Google data to reported COVID-19 cases. Responsiveness
is measured using a regression of mobility as the dependent variable and log confirmed cases as key independent variable, see equation (1).
Responsiveness is defined as the absolute value of this regression coefficient or |u1], because more reported COVID-19 cases typically reduce mobility,
so more negative coefficients correspond to more responsiveness of mobility to reported case counts. The horizontal axis is the state-specific inital
mobility, the constant po from equation (1) with mobility as the dependent variable. The fit trendline has the equation y = 0.22 x  — 0.16, with
Adjusted R? = 0.49 (estimate S.E.= 0.03, P-value<0.001).
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Fig 9. Information states: D denotes ”Detected”, U denotes ”Undetected”, S denotes ”Symptomatic”, A denotes
” Asympoptomatic”.
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Fig 10. The figure shows the following state variables: S: number of susceptible individuals; E: number of exposed
individuals; EP: number of detected exposed individuals; I4: number of infected, asymptomatic individuals; 7°: number of
infected, symptomatic individuals; 7°%: number of detected, symptomatic individuals; R“: the number of asymptomatic
individuals at a resolving COVID stage; R®: the number of symptomatic individuals at a resolving COVID stage; C: the
number of individuals who recovered from COVID; Cp: number of individuals with detected COVID-19, who recovered; F’:
number of fatalities; m: mobility of individuals. The transition rates in the figure are: f;: (time-varying) exposure rate to
COVID-19 among susceptible individuals; o: the transition rate from exposure to infection; a: fraction of asymptomatic cases
among all infected; «: transition rate from infection to resolving stage; 6: transition rate from resolving stage to either fatality
or recovery stages; d;: (time-varying) probability to fatality, conditional on being in the resolving stage; 7p: rate at which
exposed or asymptomatic individuals are detected through proactive testing (e.g. randomized testing), 7s: rate at which
symptomatic individuals are detected through testing of symptomatic individuals.
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Fig 11. Model estimates vs data in black dots. First vertical line is end of first training sample, while every day before first and second vertical line is
another training sample. We estimate 28 models, 10 of which are displayed in dashed lines. Data beyond the second line is test data for cross-validation of
optimal ensemble model. Optimal ensemble is shown in blue, while naive ensemble, which averages across all 28 models is shown in red dashed line.
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Fig 12. Blue line captures ensemble estimates from Figure 11. Dashed line is outcomes without state lockdown but with
voluntary social distancing. Dotted line is counterfactual without voluntary social distancing but with state lockdown.
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